
UDS
Release 0.1.1

Maciej Dąbrowski

Oct 02, 2021

CONTENTS

1 Installation 1

2 Diagnostic Messages 3
2.1 UDS Message Implementation . 3
2.2 UDS Packet Implementation . 4
2.3 UDS Messages Data . 6
2.4 Transmission Attributes . 7

3 Segmentation 9
3.1 AbstractSegmenter . 9

4 Transport Interfaces 11
4.1 CAN Transport Interface . 11
4.2 Ethernet Transport Interface . 11
4.3 LIN Transport Interface . 11
4.4 FlexRay Transport Interface . 11
4.5 K-Line Transport Interface . 11
4.6 Custom Transport Interface . 12

5 Client Simulation 13

6 Server Simulation 15

7 API Reference 17
7.1 uds . 17

8 UDS Knowledge Base 41
8.1 UDS OSI Model . 41
8.2 Diagnostic Message . 43
8.3 UDS Packet . 60
8.4 Segmentation . 60

9 Contribution 63
9.1 How to contribute? . 63
9.2 Sponsoring . 63
9.3 Reporting issues . 63
9.4 Our Sponsors . 63

10 Overview 65

11 Implementation Status 67

i

11.1 Features . 67
11.2 Buses supported . 67

12 License 69

13 Contact 71

Python Module Index 73

Index 75

ii

CHAPTER

ONE

INSTALLATION

To install the package, run the following command in your command line interface:

pip install py-uds

If you have already installed the package, you can update it using the following command:

pip install -U py-uds

UDS package is distributed via PyPI. You can visit distribution page of UDS package using the following hyperlink:
https://pypi.org/project/py-uds/.

1

https://pypi.org/
https://pypi.org/project/py-uds/

UDS, Release 0.1.1

2 Chapter 1. Installation

CHAPTER

TWO

DIAGNOSTIC MESSAGES

Implementation related to diagnostic messages and packets is located in uds.messages sub-package.

2.1 UDS Message Implementation

Diagnostic messages implementation is divided into two parts:

• UDS Message - storage for a temporary diagnostic message definition on the user side

• UDS Message Record - storage for historic information of a diagnostic message that was either received or
transmitted

2.1.1 UDS Message

UdsMessage class is meant to provide containers for diagnostic messages information. Once a diagnostic message
object is created, it stores diagnostic message data that were provided by a user. One can use these objects to execute
complex operations (provided in other subpackages) such as diagnostic messages transmission or segmentation.

All UdsMessage attributes are validated on each value change, therefore a user will face an exception if one tries to
set an invalid (incompatible with the annotation) value to of these attributes.

Attributes implemented in UdsMessage class:

• payload - settable

• addressing - settable

Example code:

from uds.messages import UdsMessage, AddressingType

example how to create an object
uds_message = UdsMessage(payload=[0x10, 0x03],

addressing=AddressingType.PHYSICAL)

raw message attribute
print(uds_message.payload)
uds_message.payload = (0x62, 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF)
print(uds_message.payload)
uds_message.payload = [0x3E, 0x80]
print(uds_message.payload)

(continues on next page)

3

UDS, Release 0.1.1

(continued from previous page)

addressing attribute
print(uds_message.addressing)
uds_message.addressing = AddressingType.FUNCTIONAL
print(uds_message.addressing)
uds_message.addressing = AddressingType.PHYSICAL.value
print(uds_message.addressing)

2.1.2 UDS Message Record

UdsMessageRecord class is meant to provide container for historic information of diagnostic messages that were
either transmitted or received. A user shall not create objects of this class in normal cases, but one would probably
use them quite often as they are returned by other layers of uds package.

All UdsMessageRecord attributes are read only (they are set only once upon an object creation) as they store historic
data and history cannot be changed (can’t it, right?). A user will face an exception if one tries to modify any attribute.

Attributes implemented in UdsMessageRecord class:

• payload - readable

• addressing - readable

• direction - readable

• packets_records - readable

• transmission_start - readable

• transmission_end - readable

2.2 UDS Packet Implementation

UDS packets implementation is divided into three parts:

• UDS Packet Type - enums with Network Protocol Control Information (N_PCI) values definitions

• UDS Packet - storages for a temporary Network Protocol Data Unit (N_PDU) definition on the user side

• UDS Packet Record - storages for historic information of a Network Protocol Data Unit (N_PDU) that was
either received or transmitted

2.2.1 UDS Packet Type

UDS packet types are supposed to be understood as values of Network Protocol Control Information (N_PCI). Sup-
ported values of UDS packet types are defined in specially designed for this purpose enum classes.

Enum classes that implements UDS packet types:

• AbstractUdsPacketType

4 Chapter 2. Diagnostic Messages

UDS, Release 0.1.1

AbstractUdsPacketType

AbstractUdsPacketType class is an empty enum that is a parent class for all concrete UDS packet types enum
classes. It provides common API and values restriction (UDS packet type values must be 4-bit integer) for all
children classes.

A user shall not use AbstractUdsPacketType directly, but one is able (and encouraged) to use
AbstractUdsPacketType implementation with any of its children classes.

Methods implemented in AbstractUdsPacketType class:

• is_member()

• validate_member()

• add_member()

2.2.2 UDS Packet

UDS packets differs for each communication bus, therefore multiple classes implementing them are defined. Each
UDS packet class provides containers for Network Protocol Data Unit (N_PDU) information that are specific for a
communication bus for which this class is relevant. Objects of UDS packet classes might be used to execute complex
operations (provided in other subpackages) such as packets transmission or desegmentation.

Implemented UDS packet classes:

• AbstractUdsPacket

AbstractUdsPacket

AbstractUdsPacket class contains common implementation and provides common API for all UDS Packet
classes as they are inheriting after AbstractUdsPacket class.

A user shall not use AbstractUdsPacket directly, but one is able (and encouraged) to use AbstractUdsPacket
implementation with any of its children classes.

Properties implemented in AbstractUdsPacket class:

• raw_data - settable

• addressing - settable

• packet_type - readable

2.2.3 UDS Packet Record

UDS packet record is a container that stores historic information of UDS packet (N_PDU) that was either received
or transmitted. UDS packets differs for each communication bus, therefore multiple classes implementing UDS
packet records are defined.

A user shall not create objects of UDS packet record classes in normal cases, but one would probably use them quite
often as they are returned by other layers of uds package.

Implemented UDS packet record classes:

• AbstractUdsPacketRecord

2.2. UDS Packet Implementation 5

UDS, Release 0.1.1

AbstractUdsPacketRecord

AbstractUdsPacketRecord class contains common implementation and provides common API for all UDS
Packet classes as they are inheriting after AbstractUdsPacketRecord class.

A user shall not use AbstractUdsPacketRecord directly, but one is able (and encouraged) to use
AbstractUdsPacketRecord implementation with any of its children classes.

Properties implemented in AbstractUdsPacketRecord class:

• frame - readable

• direction - readable

• packet_type - readable

• raw_data - readable and abstract (bus specific)

• addressing - readable and abstract (bus specific)

• transmission_time - readable and abstract (bus specific)

2.3 UDS Messages Data

Implementation of data parameters that are defined by UDS specification.

UDS data parameters:

• Service Identifiers - are implemented by:

– POSSIBLE_REQUEST_SIDS

– RequestSID

– POSSIBLE_RESPONSE_SIDS

– ResponseSID

• Negative Response Codes

2.3.1 Service Identifiers

POSSIBLE_REQUEST_SIDS

POSSIBLE_REQUEST_SIDS is a set with all possible values of Service Identifier data parameter in a request message.

RequestSID

Enum RequestSID contains definitions of request Service Identifiers values.

Methods implemented in RequestSID class:

• is_request_sid()

• is_member()

• validate_member()

• add_member()

6 Chapter 2. Diagnostic Messages

UDS, Release 0.1.1

POSSIBLE_RESPONSE_SIDS

POSSIBLE_RESPONSE_SIDS is a set with all possible values of Service Identifier data parameter in a response message.

ResponseSID

Enum ResponseSID contains definitions of response Service Identifiers values.

Methods implemented in ResponseSID class:

• is_response_sid()

• is_member()

• validate_member()

• add_member()

2.3.2 Negative Response Codes

Enum NRC contains definitions of all common (defined by ISO 14229) Negative Response Codes values.

Methods implemented in NRC class:

• is_member()

• validate_member()

• add_member()

2.4 Transmission Attributes

Attributes that describes UDS communication:

• Addressing - enum with UDS communication models

• Transmission Direction - enum with communication directions

2.4.1 Addressing

Enum AddressingType contains definitions of addressing values that determines UDS communication model:

• PHYSICAL - direct one to one communication (physical addressing)

• FUNCTIONAL - one to many communication (functional addressing)

Methods implemented in AddressingType class:

• is_member()

• validate_member()

2.4. Transmission Attributes 7

UDS, Release 0.1.1

2.4.2 Transmission Direction

Enum TransmissionDirection contains definitions of communication directions:

• RECEIVED - incoming

• TRANSMITTED - outcoming

Methods implemented in TransmissionDirection class:

• is_member()

• validate_member()

8 Chapter 2. Diagnostic Messages

CHAPTER

THREE

SEGMENTATION

Implementation related to segmentation is located in uds.segmentation sub-package.

3.1 AbstractSegmenter

AbstractSegmenter defines common API and contains common code for all segmenter classes. Each concrete seg-
menter class implements segmentation strategy for a specific bus.

A user shall not use AbstractSegmenter directly, but one is able (and encouraged) to use AbstractSegmenter
implementation with any of its children classes.

Attributes defined in AbstractUdsPacketType class:

• supported_packet_classes - readable and abstract (bus specific)

• initial_packet_types - readable and abstract (bus specific)

Methods defined in AbstractUdsPacketType class:

• is_supported_packet()

• is_supported_packets_sequence()

• is_initial_packet()

• get_consecutive_packets_number()

• is_following_packets_sequence()

• is_complete_packets_sequence()

• segmentation()

• desegmentation()

9

https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

UDS, Release 0.1.1

10 Chapter 3. Segmentation

CHAPTER

FOUR

TRANSPORT INTERFACES

Transport interfaces are meant to handle Physical (layer 1), Data (layer 2), Network (layer 3) and Transport (layer 4)
layers of UDS OSI model which are unique for every communication bus. First two layers (Physical and Data Link)
are usually handled by external packages (e.g. python-can handles first two layers for CAN bus).

4.1 CAN Transport Interface

CAN FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE INFOR-
MATION TO DISPLAY.

4.2 Ethernet Transport Interface

Ethernet FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE IN-
FORMATION TO DISPLAY.

4.3 LIN Transport Interface

LIN FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE INFOR-
MATION TO DISPLAY.

4.4 FlexRay Transport Interface

FlexRay FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE IN-
FORMATION TO DISPLAY.

4.5 K-Line Transport Interface

K-Line FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE IN-
FORMATION TO DISPLAY.

11

https://python-can.readthedocs.io/en/master/

UDS, Release 0.1.1

4.6 Custom Transport Interface

THIS FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE INFOR-
MATION TO DISPLAY.

12 Chapter 4. Transport Interfaces

CHAPTER

FIVE

CLIENT SIMULATION

This chapter describes how to simulate client (diagnostic tester or any other node which sends its request to other ECUs)
in UDS communication. Client simulation enables sending diagnostic requests and receiving diagnostic responses from
connected nodes.

THIS FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE INFOR-
MATION TO DISPLAY.

13

https://github.com/mdabrowski1990/uds/milestone/8

UDS, Release 0.1.1

14 Chapter 5. Client Simulation

CHAPTER

SIX

SERVER SIMULATION

This chapter describes how to simulate server (any ECU that is recipient of diagnostic requests) in UDS communication.
Server simulation supports defining diagnostic responses to incoming requests and then python program send them
automatically according to the configuration provided by the user.

THIS FEATURE IS PLANNED BUT NOT IMPLEMENTED YET, THEREFORE THERE ARE NO MORE INFOR-
MATION TO DISPLAY.

15

https://github.com/mdabrowski1990/uds/milestone/7

UDS, Release 0.1.1

16 Chapter 6. Server Simulation

CHAPTER

SEVEN

API REFERENCE

This page contains auto-generated API reference documentation1.

7.1 uds

Package for handling Unified Diagnostic Services (UDS) protocol defined by ISO-14229.

The package is meant to provide tools that enables:

• monitoring UDS communication

• simulation of any UDS node (either a client or a server)

• testing of a device that supports UDS

• injection of communication faults on any layers 3-7 of UDS OSI Model

The package is created with an idea to support any communication bus:

• CAN

• LIN

• Ethernet

• FlexRay

• K-Line

7.1.1 Subpackages

uds.messages

A subpackage with tools for handling diagnostic messages.

It provides tools for:

• creating new diagnostic messages

• storing historic information about diagnostic messages that were either received or transmitted

• creating new packets

• storing historic information about packets that were either received or transmitted

• Service Identifiers (SID) definition
1 Created with sphinx-autoapi

17

https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/FlexRay
https://en.wikipedia.org/wiki/K-Line
https://github.com/readthedocs/sphinx-autoapi

UDS, Release 0.1.1

• Negative Response Codes (NRC) definition

• addressing types definition

Submodules

uds.messages.nrc

Module with entire Negative Response Codes (NRC) implementation.

Module Contents

Classes

NRC Negative Response Codes (NRC) values.

class uds.messages.nrc.NRC
Bases: uds.utilities.ByteEnum, uds.utilities.ValidatedEnum, uds.utilities.ExtendableEnum

ByteEnum

NRC

IntEnum

Enum ExtendableEnum

ValidatedEnum

Negative Response Codes (NRC) values.

Explanation of NRC values meaning is located in appendix A1 of ISO 14229-1 standard.

Initialize self. See help(type(self)) for accurate signature.

GeneralReject = 16
GeneralReject (0x10) NRC indicates that the requested action has been rejected by the server.

ServiceNotSupported = 17
ServiceNotSupported (0x11) NRC indicates that the requested action will not be taken because the server
does not support the requested service.

SubFunctionNotSupported = 18
SubFunctionNotSupported (0x12) NRC indicates that the requested action will not be taken because the
server does not support the service specific parameters of the request message.

IncorrectMessageLengthOrInvalidFormat = 19
IncorrectMessageLengthOrInvalidFormat (0x13) NRC indicates that the requested action will not be taken
because the length of the received request message does not match the prescribed length for the specified
service or the format of the parameters do not match the prescribed format for the specified service.

18 Chapter 7. API Reference

UDS, Release 0.1.1

ResponseTooLong = 20
ResponseTooLong (0x14) NRC shall be reported by the server if the response to be generated exceeds
the maximum number of bytes available by the underlying network layer. This could occur if the response
message exceeds the maximum size allowed by the underlying transport protocol or if the response message
exceeds the server buffer size allocated for that purpose.

BusyRepeatRequest = 33
BusyRepeatRequest (0x21) NRC indicates that the server is temporarily too busy to perform the requested
operation. In this circumstance the client shall perform repetition of the “identical request message” or “an-
other request message”. The repetition of the request shall be delayed by a time specified in the respective
implementation documents.

ConditionsNotCorrect = 34
ConditionsNotCorrect (0x22) NRC indicates that the requested action will not be taken because the server
prerequisite conditions are not met.

RequestSequenceError = 36
RequestSequenceError (0x24) NRC indicates that the requested action will not be taken because the server
expects a different sequence of request messages or message as sent by the client. This may occur when
sequence sensitive requests are issued in the wrong order.

NoResponseFromSubnetComponent = 37
NoResponseFromSubnetComponent (0x25) NRC indicates that the server has received the request but the
requested action could not be performed by the server as a subnet component which is necessary to supply
the requested information did not respond within the specified time.

FailurePreventsExecutionOfRequestedAction = 38
FailurePreventsExecutionOfRequestedAction (0x26) NRC indicates that the requested action will not be
taken because a failure condition, identified by a DTC (with at least one DTC status bit for TestFailed,
Pending, Confirmed or TestFailedSinceLastClear set to 1), has occurred and that this failure condition
prevents the server from performing the requested action.

RequestOutOfRange = 49
RequestOutOfRange (0x31) NRC indicates that the requested action will not be taken because the server
has detected that the request message contains a parameter which attempts to substitute a value beyond its
range of authority (e.g. attempting to substitute a data byte of 111 when the data is only defined to 100), or
which attempts to access a DataIdentifier/RoutineIdentifer that is not supported or not supported in active
session.

SecurityAccessDenied = 51
SecurityAccessDenied (0x33) NRC indicates that the requested action will not be taken because the server’s
security strategy has not been satisfied by the client.

AuthenticationRequired = 52
AuthenticationRequired (0x34) NRC indicates that the requested service will not be taken because the client
has insufficient rights based on its Authentication state.

InvalidKey = 53
InvalidKey (0x35) NRC indicates that the server has not given security access because the key sent by the
client did not match with the key in the server’s memory. This counts as an attempt to gain security.

ExceedNumberOfAttempts = 54
ExceedNumberOfAttempts (0x36) NRC indicates that the requested action will not be taken because the
client has unsuccessfully attempted to gain security access more times than the server’s security strategy
will allow.

RequiredTimeDelayNotExpired = 55
RequiredTimeDelayNotExpired (0x37) NRC indicates that the requested action will not be taken because

7.1. uds 19

UDS, Release 0.1.1

the client’s latest attempt to gain security access was initiated before the server’s required timeout period
had elapsed.

SecureDataTransmissionRequired = 56
SecureDataTransmissionRequired (0x38) NRC indicates that the requested service will not be taken be-
cause the requested action is required to be sent using a secured communication channel.

SecureDataTransmissionNotAllowed = 57
SecureDataTransmissionNotAllowed (0x39) NRC indicates that this message was received using the Se-
curedDataTransmission (SID 0x84) service. However, the requested action is not allowed to be sent using
the SecuredDataTransmission (0x84) service.

SecureDataVerificationFailed = 58
SecureDataVerificationFailed (0x3A) NRC indicates that the message failed in the security sub-layer.

CertificateVerificationFailed_InvalidTimePeriod = 80
CertificateVerificationFailed_InvalidTimePeriod (0x50) NRC indicates that date and time of the server does
not match the validity period of the Certificate.

CertificateVerificationFailed_InvalidSignature = 81
CertificateVerificationFailed_InvalidSignature (0x51) NRC indicates that signature of the Certificate could
not be verified.

CertificateVerificationFailed_InvalidChainOfTrust = 82
CertificateVerificationFailed_InvalidChainOfTrust (0x52) NRC indicates that The Certificate could not be
verified against stored information about the issuing authority.

CertificateVerificationFailed_InvalidType = 83
CertificateVerificationFailed_InvalidType (0x53) NRC indicates that the Certificate does not match the cur-
rent requested use case.

CertificateVerificationFailed_InvalidFormat = 84
CertificateVerificationFailed_InvalidFormat (0x54) NRC indicates that the Certificate could not be evalu-
ated because the format requirement has not been met.

CertificateVerificationFailed_InvalidContent = 85
CertificateVerificationFailed_InvalidContent (0x55) NRC indicates that the Certificate could not be verified
because the content does not match.

CertificateVerificationFailed_InvalidScope = 86
CertificateVerificationFailed_InvalidScope (0x56) NRC indicates that the scope of the Certificate does not
match the contents of the server.

CertificateVerificationFailed_InvalidCertificate = 87
CertificateVerificationFailed_InvalidCertificate (0x57) NRC indicates that the Certificate received from
client is invalid, because the server has revoked access for some reason.

OwnershipVerificationFailed = 88
OwnershipVerificationFailed (0x58) NRC indicates that delivered Ownership does not match the provided
challenge or could not verified with the own private key.

ChallengeCalculationFailed = 89
ChallengeCalculationFailed (0x59) NRC indicates that the challenge could not be calculated on the server
side.

SettingAccessRightsFailed = 90
SettingAccessRightsFailed (0x5A) NRC indicates that the server could not set the access rights.

SessionKeyCreationOrDerivationFailed = 91
SessionKeyCreationOrDerivationFailed (0x5B) NRC indicates that the server could not create or derive a
session key.

20 Chapter 7. API Reference

UDS, Release 0.1.1

ConfigurationDataUsageFailed = 92
ConfigurationDataUsageFailed (0x5C) NRC indicates that the server could not work with the provided
configuration data.

DeAuthenticationFailed = 93
DeAuthenticationFailed (0x5D) NRC indicates that DeAuthentication was not successful, server could still
be unprotected.

UploadDownloadNotAccepted = 112
UploadDownloadNotAccepted (0x70) NRC indicates that an attempt to upload/download to a server’s
memory cannot be accomplished due to some fault conditions.

TransferDataSuspended = 113
TransferDataSuspended (0x71) NRC indicates that a data transfer operation was halted due to some fault.
The active transferData sequence shall be aborted.

GeneralProgrammingFailure = 114
GeneralProgrammingFailure (0x72) NRC indicates that the server detected an error when erasing or pro-
gramming a memory location in the permanent memory device (e.g. Flash Memory).

WrongBlockSequenceCounter = 115
WrongBlockSequenceCounter (0x73) NRC indicates that the server detected an error in the sequence of
blockSequenceCounter values. Note that the repetition of a TransferData request message with a blockSe-
quenceCounter equal to the one included in the previous TransferData request message shall be accepted
by the server.

RequestCorrectlyReceived_ResponsePending = 120
RequestCorrectlyReceived_ResponsePending (0x78) NRC ndicates that the request message was received
correctly, and that all parameters in the request message were valid (these checks can be delayed until after
sending this NRC if executing the boot software), but the action to be performed is not yet completed and the
server is not yet ready to receive another request. As soon as the requested service has been completed, the
server shall send a positive response message or negative response message with a response code different
from this.

SubFunctionNotSupportedInActiveSession = 126
SubFunctionNotSupportedInActiveSession (0x7E) NRC indicates that the requested action will not be
taken because the server does not support the requested SubFunction in the session currently active. This
NRC shall only be used when the requested SubFunction is known to be supported in another session,
otherwise response code SubFunctionNotSupported shall be used.

ServiceNotSupportedInActiveSession = 127
ServiceNotSupportedInActiveSession (0x7F) NRC indicates that the requested action will not be taken
because the server does not support the requested service in the session currently active. This NRC shall
only be used when the requested service is known to be supported in another session, otherwise response
code serviceNotSupported shall be used.

RpmTooHigh = 129
RpmTooHigh (0x81) NRC indicates that the requested action will not be taken because the server prereq-
uisite condition for RPM is not met (current RPM is above a preprogrammed maximum threshold).

RpmTooLow = 130
RpmTooLow (0x82) NRC indicates that the requested action will not be taken because the server prereq-
uisite condition for RPM is not met (current RPM is below a preprogrammed minimum threshold).

EngineIsRunning = 131
EngineIsRunning (0x83) NRC is required for those actuator tests which cannot be actuated while the Engine
is running. This is different from RPM too high negative response, and shall be allowed.

EngineIsNotRunning = 132
EngineIsNotRunning (0x84) NRC is required for those actuator tests which cannot be actuated unless the

7.1. uds 21

UDS, Release 0.1.1

Engine is running. This is different from RPM too low negative response, and shall be allowed.

EngineRunTimeTooLow = 133
EngineRunTimeTooLow (0x85) NRC indicates that the requested action will not be taken because the server
prerequisite condition for engine run time is not met (current engine run time is below a preprogrammed
limit).

TemperatureTooHigh = 134
TemperatureTooHigh (0x86) NRC indicates that the requested action will not be taken because the serve
prerequisite condition for temperature is not met (current temperature is above a preprogrammed maximum
threshold).

TemperatureTooLow = 135
TemperatureTooLow (0x87) NRC indicates that the requested action will not be taken because the server
prerequisite condition for temperature is not met (current temperature is below a preprogrammed minimum
threshold).

VehicleSpeedTooHigh = 136
VehicleSpeedTooHigh (0x88) NRC indicates that the requested action will not be taken because the server
prerequisite condition for vehicle speed is not met (current VS is above a preprogrammed maximum thresh-
old).

VehicleSpeedTooLow = 137
VehicleSpeedTooLow (0x89) NRC indicates that the requested action will not be taken because the server
prerequisite condition for vehicle speed is not met (current VS is below a preprogrammed minimum thresh-
old).

ThrottleOrPedalTooHigh = 138
ThrottleOrPedalTooHigh (0x8A) NRC indicates that the requested action will not be taken because the
server prerequisite condition for throttle/pedal position is not met (current throttle/pedal position is above
a preprogrammed maximum threshold).

ThrottleOrPedalTooLow = 139
ThrottleOrPedalTooLow (0x8B) NRC indicates that the requested action will not be taken because the
server prerequisite condition for throttle/pedal position is not met (current throttle/pedal position is below
a preprogrammed minimum threshold).

TransmissionRangeNotInNeutral = 140
TransmissionRangeNotInNeutral (0x8C) NRC indicates that the requested action will not be taken because
the server prerequisite condition for being in neutral is not met (current transmission range is not in neutral).

TransmissionRangeNotInGear = 141
TransmissionRangeNotInGear (0x8D) NRC indicates that the requested action will not be taken because
the server prerequisite condition for being in gear is not met (current transmission range is not in gear).

BrakeSwitchOrSwitchesNotClosed = 143
BrakeSwitchOrSwitchesNotClosed (0x8F) NRC indicates that for safety reasons, this is required for certain
tests before it begins, and shall be maintained for the entire duration of the test.

ShifterLeverNotInPark = 144
ShifterLeverNotInPark (0x90) NRC indicates that for safety reasons, this is required for certain tests before
it begins, and shall be maintained for the entire duration of the test.

TorqueConvertClutchLocked = 145
TorqueConvertClutchLocked (0x91) RC indicates that the requested action will not be taken because the
server prerequisite condition for torque converter clutch is not met (current torque converter clutch status
above a preprogrammed limit or locked).

VoltageTooHigh = 146
VoltageTooHigh (0x92) NRC indicates that the requested action will not be taken because the server pre-

22 Chapter 7. API Reference

UDS, Release 0.1.1

requisite condition for voltage at the primary pin of the server (ECU) is not met (current voltage is above a
preprogrammed maximum threshold).

VoltageTooLow = 147
VoltageTooLow (0x93) NRC indicates that the requested action will not be taken because the server pre-
requisite condition for voltage at the primary pin of the server (ECU) is not met (current voltage is below
a preprogrammed minimum threshold).

ResourceTemporarilyNotAvailable = 148
ResourceTemporarilyNotAvailable (0x94) NRC indicates that the server has received the request but the
requested action could not be performed by the server because an application which is necessary to supply
the requested information is temporality not available. This NRC is in general supported by each diagnostic
service, as not otherwise stated in the data link specific implementation document, therefore it is not listed
in the list of applicable response codes of the diagnostic services.

uds.messages.service_identifiers

Service Identifiers (SID) implementation.

Module Contents

Classes

RequestSID Request Service Identifier values for all services that are
defined in ISO 14229-1:2020.

ResponseSID Response Service Identifier values for all services that
are defined in ISO 14229-1:2020.

Attributes

POSSIBLE_REQUEST_SIDS Set with all possible values of Request SID data param-
eter according to SAE J1979 and ISO 14229 standards.

POSSIBLE_RESPONSE_SIDS Set with all possible values of Response SID data param-
eter according to SAE J1979 and ISO 14229 standards.

uds.messages.service_identifiers.POSSIBLE_REQUEST_SIDS :uds.utilities.RawBytesSet
Set with all possible values of Request SID data parameter according to SAE J1979 and ISO 14229 standards.

uds.messages.service_identifiers.POSSIBLE_RESPONSE_SIDS :uds.utilities.RawBytesSet
Set with all possible values of Response SID data parameter according to SAE J1979 and ISO 14229 standards.

exception uds.messages.service_identifiers.UnrecognizedSIDWarning
Bases: Warning

7.1. uds 23

UDS, Release 0.1.1

UnrecognizedSIDWarning

Warning about SID value that is legit but not recognized by the package.

If you want to register a SID value, you need to define members (for this SID) manually using add_member()
method (on RequestSID and ResponseSID classes). You can also create feature request in the UDS project
issues management system to register the SID value (for which this warning was raised).

Initialize self. See help(type(self)) for accurate signature.

class uds.messages.service_identifiers.RequestSID
Bases: uds.utilities.ByteEnum, uds.utilities.ValidatedEnum, uds.utilities.ExtendableEnum

ByteEnum

RequestSID

IntEnum

Enum ExtendableEnum

ValidatedEnum

Request Service Identifier values for all services that are defined in ISO 14229-1:2020.

Note: Request SID is always the first payload byte of all request messages.

Initialize self. See help(type(self)) for accurate signature.

DiagnosticSessionControl = 16

ECUReset = 17

SecurityAccess = 39

CommunicationControl = 40

Authentication = 41

TesterPresent = 62

ControlDTCSetting = 133

ResponseOnEvent = 134

LinkControl = 135

ReadDataByIdentifier = 34

ReadMemoryByAddress = 35

ReadScalingDataByIdentifier = 36

24 Chapter 7. API Reference

https://github.com/mdabrowski1990/uds/issues/new/choose

UDS, Release 0.1.1

ReadDataByPeriodicIdentifier = 42

DynamicallyDefineDataIdentifier = 44

WriteDataByIdentifier = 46

WriteMemoryByAddress = 61

ClearDiagnosticInformation = 20

ReadDTCInformation = 25

InputOutputControlByIdentifier = 47

RoutineControl = 49

RequestDownload = 52

RequestUpload = 53

TransferData = 54

RequestTransferExit = 55

RequestFileTransfer = 56

SecuredDataTransmission = 132

classmethod is_request_sid(cls, value)
Check whether given value is Service Identifier (SID).

Parameters value (uds.utilities.RawByte) – Value to check.

Returns True if value is valid SID, else False.

Return type bool

class uds.messages.service_identifiers.ResponseSID
Bases: uds.utilities.ByteEnum, uds.utilities.ValidatedEnum, uds.utilities.ExtendableEnum

ByteEnum

ResponseSID

IntEnum

Enum ExtendableEnum

ValidatedEnum

Response Service Identifier values for all services that are defined in ISO 14229-1:2020.

Note: Response SID is always the first payload byte of all request messages.

Note: This Enum contains multiple members (for all the services as RequestSID), but most of them are dynam-
ically (implicitly) added and invisible in the documentation.

Initialize self. See help(type(self)) for accurate signature.

NegativeResponse = 127

7.1. uds 25

UDS, Release 0.1.1

classmethod is_response_sid(cls, value)
Check whether given value is Response Service Identifier (RSID).

Parameters value (uds.utilities.RawByte) – Value to check.

Returns True if value is valid RSID, else False.

Return type bool

uds.messages.transmission_attributes

Attributes that describes UDS communication.

Module Contents

Classes

AddressingType Model of UDS communication.
TransmissionDirection Direction of a communication.

Attributes

AddressingMemberTyping Typing alias that describes AddressingType member.
DirectionMemberTyping Typing alias that describes TransmissionDirection mem-

ber.

class uds.messages.transmission_attributes.AddressingType
Bases: aenum.StrEnum, uds.utilities.ValidatedEnum

AddressingType

StrEnum

ValidatedEnum

Enum

Model of UDS communication.

Initialize self. See help(type(self)) for accurate signature.

PHYSICAL = Physical
Physical addressing - 1 (client) to 1 (server) communication.

FUNCTIONAL = Functional
Functional addressing - 1 (client) to many (servers) communication.

uds.messages.transmission_attributes.AddressingMemberTyping

26 Chapter 7. API Reference

UDS, Release 0.1.1

Typing alias that describes AddressingType member.

class uds.messages.transmission_attributes.TransmissionDirection
Bases: aenum.StrEnum, uds.utilities.ValidatedEnum

Enum

StrEnum

ValidatedEnum

TransmissionDirection

Direction of a communication.

Initialize self. See help(type(self)) for accurate signature.

RECEIVED = Rx
Incoming transmission from the perspective of the code.

TRANSMITTED = Tx
Outcoming transmission from the perspective of the code.

uds.messages.transmission_attributes.DirectionMemberTyping
Typing alias that describes TransmissionDirection member.

uds.messages.uds_message

Module with common implementation of all diagnostic messages (requests and responses).

Diagnostic messages are defined on higher layers of UDS OSI Model.

Module Contents

Classes

UdsMessage Definition of a diagnostic message.
UdsMessageRecord Storage for historic information of a diagnostic message

that was either received or transmitted.

class uds.messages.uds_message.UdsMessage(payload, addressing)
Definition of a diagnostic message.

Objects of this class act as a storage for all relevant attributes of a diagnostic message. Later on, such object
might be used in segmentation process or to transmit the message. Once a message is transmitted, its historic
data would be stored in UdsMessageRecord .

Create a storage for a single diagnostic message.

Parameters

• payload (uds.utilities.RawBytes) – Raw bytes of payload that this diagnostic message

7.1. uds 27

UDS, Release 0.1.1

carries.

• addressing (uds.messages.transmission_attributes.
AddressingMemberTyping) – Addressing type for which this message is relevant.

property payload(self)
Raw bytes of payload that this diagnostic message carries.

Return type uds.utilities.RawBytesTuple

property addressing(self)
Addressing type for which this message is relevant.

Return type uds.messages.transmission_attributes.AddressingType

class uds.messages.uds_message.UdsMessageRecord(payload, packets_records)
Storage for historic information of a diagnostic message that was either received or transmitted.

Create a record of a historic information about a diagnostic message that was either received or transmitted.

Parameters

• packets_records (uds.messages.uds_packet.PacketsRecordsSequence) – Se-
quence (in transmission order) of UDS packets records that carried this diagnostic message.

• payload (uds.utilities.RawBytes) –

static __validate_packets_records(value)
Validate whether the argument contains UDS Packets records.

Parameters value (Any) – Value to validate.

Raises

• TypeError – UDS Packet Records sequence is not list or tuple type.

• ValueError – At least one of UDS Packet Records sequence elements is not an object of
AbstractUdsPacketRecord class.

Return type None

property payload(self)
Raw bytes of payload that this diagnostic message carried.

Return type uds.utilities.RawBytesTuple

property packets_records(self)
Sequence (in transmission order) of UDS packets records that carried this diagnostic message.

Return type uds.messages.uds_packet.PacketsRecordsTuple

property addressing(self)
Addressing type which was used to transmit this message.

Return type uds.messages.transmission_attributes.AddressingType

property direction(self)
Information whether this message was received or sent by the code.

Return type uds.messages.transmission_attributes.TransmissionDirection

property transmission_start(self)
Time stamp when transmission of this messages was initiated.

It is determined by a moment of time when the first packet (that carried this message) was published to a
bus (either received or transmitted).

28 Chapter 7. API Reference

UDS, Release 0.1.1

Returns Time stamp when transmission of this message was initiated.

Return type uds.utilities.TimeStamp

property transmission_end(self)
Time stamp when transmission of this messages was completed.

It is determined by a moment of time when the last packet (that carried this message) was published to a
bus (either received or transmitted).

Returns Time stamp when transmission of this message was completed.

Return type uds.utilities.TimeStamp

uds.messages.uds_packet

Module with common implementation of UDS packets for all bus types.

UDS Packets are defined on middle layers of UDS OSI Model.

Module Contents

Classes

AbstractUdsPacketType Abstract definition of UDS packet type.
AbstractUdsPacket Abstract definition of UDS Packet (Network Protocol

Data Unit - N_PDU).
AbstractUdsPacketRecord Abstract definition of a storage for historic information

about transmitted or received UDS Packet.

Attributes

PacketTypesTuple Typing alias of a tuple filled with
AbstractUdsPacketType members.

PacketsDefinitionTuple Typing alias of a tuple filled with AbstractUdsPacket
instances.

PacketsDefinitionSequence Typing alias of a sequence filled with
AbstractUdsPacket instances.

PacketsRecordsTuple Typing alias of a tuple filled with
AbstractUdsPacketRecord instances.

PacketsRecordsSequence Typing alias of a sequence filled with
AbstractUdsPacketRecord instances.

PacketTyping Typing alias of UDS packet.
PacketsTuple Typing alias of a tuple filled with UDS packets.
PacketsSequence Typing alias of a sequence filled with UDS packets.

class uds.messages.uds_packet.AbstractUdsPacketType
Bases: uds.utilities.NibbleEnum, uds.utilities.ValidatedEnum, uds.utilities.
ExtendableEnum

7.1. uds 29

UDS, Release 0.1.1

AbstractUdsPacketType

NibbleEnum

ValidatedEnum

ExtendableEnumEnum

IntEnum

Abstract definition of UDS packet type.

Packet type information is carried by Network Protocol Control Information (N_PCI). Enums with packet types
(N_PCI) values for certain buses (e.g. CAN, LIN, FlexRay) must inherit after this class.

Note: There are some differences in values for each bus (e.g. LIN does not use Flow Control).

Initialize self. See help(type(self)) for accurate signature.

abstract classmethod is_initial_packet_type(cls, value)
Check whether given argument is a member or a value of packet type that initiates a diagnostic message.

Parameters value (Any) – Value to check.

Returns True if given argument is a packet type that initiates a diagnostic message, else False.

Return type bool

class uds.messages.uds_packet.AbstractUdsPacket(raw_data, addressing)
Bases: abc.ABC

ABC AbstractUdsPacket

Abstract definition of UDS Packet (Network Protocol Data Unit - N_PDU).

Create a storage for a single UDS packet.

Parameters

• raw_data (uds.utilities.RawBytes) – Raw bytes of UDS packet data.

• addressing (uds.messages.transmission_attributes.
AddressingMemberTyping) – Addressing type for which this packet is relevant.

property addressing(self)
Addressing type for which this packet is relevant.

Return type uds.messages.transmission_attributes.AddressingType

property raw_data(self)
Raw bytes of data that this packet carries.

Return type uds.utilities.RawBytesTuple

30 Chapter 7. API Reference

UDS, Release 0.1.1

property packet_type(self)
UDS packet type value - N_PCI value of this N_PDU.

Return type AbstractUdsPacketType

class uds.messages.uds_packet.AbstractUdsPacketRecord(frame, direction)
Bases: abc.ABC

ABC AbstractUdsPacketRecord

Abstract definition of a storage for historic information about transmitted or received UDS Packet.

Create a record of a historic information about a packet that was either received or transmitted.

Parameters

• frame (object) – Frame that carried this UDS packet.

• direction (uds.messages.transmission_attributes.DirectionMemberTyping)
– Information whether this packet was transmitted or received.

abstract __validate_frame(self, value)
Validate whether the argument contains value with a frame object.

Parameters value (Any) – Value to validate.

Raises

• TypeError – The frame argument has other type than expected.

• ValueError – Some attribute of the frame argument is missing or its value is unexpected.

Return type None

property frame(self)
Frame that carried this packet.

Return type object

property direction(self)
Information whether this packet was transmitted or received.

Return type uds.messages.transmission_attributes.TransmissionDirection

property raw_data(self)
Raw bytes of data that this packet carried.

Return type uds.utilities.RawBytesTuple

property addressing(self)
Addressing type over which this packet was transmitted.

Return type uds.messages.transmission_attributes.AddressingType

property transmission_time(self)
Time stamp when this packet was fully transmitted on a bus.

Return type uds.utilities.TimeStamp

7.1. uds 31

UDS, Release 0.1.1

property packet_type(self)
UDS packet type value - N_PCI value of this N_PDU.

Return type AbstractUdsPacketType

uds.messages.uds_packet.PacketTypesTuple
Typing alias of a tuple filled with AbstractUdsPacketType members.

uds.messages.uds_packet.PacketsDefinitionTuple
Typing alias of a tuple filled with AbstractUdsPacket instances.

uds.messages.uds_packet.PacketsDefinitionSequence
Typing alias of a sequence filled with AbstractUdsPacket instances.

uds.messages.uds_packet.PacketsRecordsTuple
Typing alias of a tuple filled with AbstractUdsPacketRecord instances.

uds.messages.uds_packet.PacketsRecordsSequence
Typing alias of a sequence filled with AbstractUdsPacketRecord instances.

uds.messages.uds_packet.PacketTyping
Typing alias of UDS packet.

uds.messages.uds_packet.PacketsTuple
Typing alias of a tuple filled with UDS packets.

uds.messages.uds_packet.PacketsSequence
Typing alias of a sequence filled with UDS packets.

uds.segmentation

A subpackage with tools for executing segmentation.

It defines:

• common API interface for all segmentation duties

Submodules

uds.segmentation.abstract_segmenter

Definition of API for segmentation and desegmentation strategies.

Module Contents

Classes

AbstractSegmenter Abstract definition of a segmenter class.

exception uds.segmentation.abstract_segmenter.SegmentationError
Bases: ValueError

32 Chapter 7. API Reference

UDS, Release 0.1.1

SegmentationError

UDS segmentation or desegmentation process cannot be completed due to input data inconsistency.

Initialize self. See help(type(self)) for accurate signature.

class uds.segmentation.abstract_segmenter.AbstractSegmenter
Bases: abc.ABC

ABC AbstractSegmenter

Abstract definition of a segmenter class.

Segmenter classes defines UDS segmentation and desegmentation strategies. They contain helper methods that
are essential for successful segmentation and desegmentation execution. Each concrete segmenter class handles
a single bus.

property supported_packet_classes(self)
Classes that define packet objects supported by this segmenter.

Return type Tuple[type]

property initial_packet_types(self)
Types of packets that initiates a diagnostic message transmission for the managed bus.

Return type uds.messages.PacketTypesTuple

is_supported_packet(self, value)
Check if the argument value is a packet object of a supported type.

Parameters value (Any) – Value to check.

Returns True if provided value is an object of a supported packet type, False otherwise.

Return type bool

is_supported_packets_sequence(self, value)
Check if the argument value is a packet sequence of a supported type.

Parameters value (Any) – Value to check.

Returns True if provided value is a packet sequence of a supported type, False otherwise.

Return type bool

abstract is_following_packets_sequence(self, packets)
Check whether provided packets are a sequence of following packets.

Note: This function will return True under following conditions:

7.1. uds 33

https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

UDS, Release 0.1.1

• a sequence of packets was provided

• the first packet in the sequence is an initial packet

• no other packet in the sequence is an initial packet

• each packet (except the first one) is a consecutive packet for the previous packet in the sequence

Parameters packets (uds.messages.PacketsSequence) – Packets sequence to check.

Raises ValueError – Provided value is not a packets sequence of a supported type.

Returns True if the provided packets are a sequence of following packets, otherwise False.

Return type bool

is_complete_packets_sequence(self, packets)
Check whether provided packets are full sequence of packets that form exactly one diagnostic message.

Parameters packets (uds.messages.PacketsSequence) – Packets sequence to check.

Returns True if the packets form exactly one diagnostic message. False if there are missing,
additional or inconsistent (e.g. two packets that initiate a message) packets.

Return type bool

abstract get_consecutive_packets_number(self, first_packet)
Get number of consecutive packets that must follow this packet to fully store a diagnostic message.

Parameters first_packet (uds.messages.PacketTyping) – The first packet of a seg-
mented diagnostic message.

Raises ValueError – Provided value is not an an initial packet.

Returns Number of following packets that together carry a diagnostic message.

Return type int

abstract segmentation(self, message)
Perform segmentation of a diagnostic message.

Parameters message (uds.messages.UdsMessage) – UDS message to divide into UDS pack-
ets.

Raises TypeError – Provided ‘message’ argument is not UdsMessage type.

Returns UDS packets that are an outcome of UDS message segmentation.

Return type uds.messages.PacketsDefinitionTuple

abstract desegmentation(self, packets)
Perform desegmentation of UDS packets.

Parameters packets (uds.messages.PacketsSequence) – UDS packets to desegment into
UDS message.

Raises SegmentationError – Provided packets are not a complete packet sequence that form
a diagnostic message.

Returns A diagnostic message that is an outcome of UDS packets desegmentation.

Return type Union[uds.messages.UdsMessage, uds.messages.UdsMessageRecord]

34 Chapter 7. API Reference

UDS, Release 0.1.1

uds.transport_interface

A subpackage with UDS middle layers (Transport and Network) implementation.

TODO: provide more information when implementing tasks that expands capabilities of this package

Submodules

uds.transport_interface.packet_queue

Module with common implementation of UDS Packets queues.

Module Contents

Classes

ReceivedPacketsQueue Queue for storing received packets.

class uds.transport_interface.packet_queue.ReceivedPacketsQueue(packet_class=AbstractUdsPacketRecord)
Queue for storing received packets.

Create a queue as a storage for received packets.

Parameters packet_class (type) – A class that defines UDS packets type that is accepted by this
queue. One can use this parameter to restrict packets managed by this queue.

Raises TypeError – Provided packet_class argument is not a class that inherits after
:class:”uds.messages.uds_packet.AbstractUdsPacketRecord”.

abstract __del__(self)
Delete the object safely.

To satisfy safe closure or tasks using the queue:

• prevent new tasks creations

• close or await already started tasks

Return type NoReturn

abstract __len__(self)
Get number of packets that are currently stored by the queue.

Return type int

abstract is_empty(self)
Check if queue is empty.

Returns True if queue is empty (does not contain any packets), False otherwise.

Return type bool

abstract packet_task_done(self)
Inform that a task related to one packet was completed.

This method is used during closing all tasks safely and quietly.

Return type None

7.1. uds 35

UDS, Release 0.1.1

abstract async get_packet(self)
Get the next received packet from the queue.

Note: If called, when there are no packets in the queue, then execution would await until another packet
is received.

Returns The next received packet.

Return type uds.messages.AbstractUdsPacketRecord

abstract async put_packet(self, packet)
Add a packet (that was just received) to the end of the queue.

Parameters packet (uds.messages.AbstractUdsPacketRecord) – A packet that was just
received.

Return type None

uds.utilities

Various helper functions, classes and variables that are shared and reused within the project.

Submodules

uds.utilities.common_types

Module with all common types (and its aliases) used in the package and helper functions for these types.

Module Contents

Functions

validate_raw_bytes(value) Validate whether provided value stores raw bytes.

Attributes

RawByte Typing alias of byte value - integer in range 0x00-0xFF
- that is used by the package.

RawBytesTuple Typing alias of a tuple filled with byte values.
RawBytesSet Typing alias of a set filled with byte values.
RawBytes Typing alias of a sequence filled with byte values.
TimeMilliseconds Typing alias of an amount of time in milliseconds that is

used by the package.
TimeStamp Typing alias of a timestamp that is used by the package.

uds.utilities.common_types.RawByte
Typing alias of byte value - integer in range 0x00-0xFF - that is used by the package.

uds.utilities.common_types.RawBytesTuple
Typing alias of a tuple filled with byte values.

36 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Timestamp

UDS, Release 0.1.1

uds.utilities.common_types.RawBytesSet
Typing alias of a set filled with byte values.

uds.utilities.common_types.RawBytes
Typing alias of a sequence filled with byte values.

uds.utilities.common_types.TimeMilliseconds
Typing alias of an amount of time in milliseconds that is used by the package.

uds.utilities.common_types.TimeStamp
Typing alias of a timestamp that is used by the package.

uds.utilities.common_types.validate_raw_bytes(value)
Validate whether provided value stores raw bytes.

Parameters value (Any) – Value to validate.

Raises

• TypeError – Value is not tuple or list type.

• ValueError – Value does not contain raw bytes (int value between 0x00-0xFF) only.

Return type None

uds.utilities.custom_exceptions

Custom exception used within the project.

Module Contents

exception uds.utilities.custom_exceptions.ReassignmentError
Bases: Exception

ReassignmentError

Attempt to set a new value of an attribute that cannot be changed after the initial value was already set.

Initialize self. See help(type(self)) for accurate signature.

7.1. uds 37

https://en.wikipedia.org/wiki/Timestamp

UDS, Release 0.1.1

uds.utilities.enums

Module with special Enums implementations.

Module Contents

Classes

ExtendableEnum Enum that supports new members adding.
ValidatedEnum Enum that supports members validation.
ByteEnum Enum which members are one byte integers (0x00-

0xFF) only.
NibbleEnum Enum which members are one nibble (4 bits) integers

(0x0-0xF) only.

class uds.utilities.enums.ExtendableEnum
Bases: aenum.Enum

Enum ExtendableEnum

Enum that supports new members adding.

classmethod add_member(cls, name, value)
Register a new member.

Parameters

• name (str) – Name of a new member.

• value (Any) – Value of a new member.

Raises ValueError – Such name or value is already in use.

Returns The new member that was just created.

Return type aenum.Enum

class uds.utilities.enums.ValidatedEnum
Bases: aenum.Enum

Enum ValidatedEnum

38 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Enumerated_type#Python

UDS, Release 0.1.1

Enum that supports members validation.

classmethod is_member(cls, value)
Check whether given argument is a member or a value stored by this Enum.

Parameters value (Any) – Value to check.

Returns True if given argument is a member or a value of this Enum, else False.

Return type bool

classmethod validate_member(cls, value)
Validate whether given argument is a member or a value stored by this Enum.

Parameters value (Any) – Value to validate.

Raises TypeError – Provided value is not a member neither a value of this Enum.

Return type None

class uds.utilities.enums.ByteEnum
Bases: aenum.IntEnum

ByteEnumIntEnumEnum

Enum which members are one byte integers (0x00-0xFF) only.

Initialize self. See help(type(self)) for accurate signature.

class uds.utilities.enums.NibbleEnum
Bases: aenum.IntEnum

Enum IntEnum NibbleEnum

Enum which members are one nibble (4 bits) integers (0x0-0xF) only.

Initialize self. See help(type(self)) for accurate signature.

7.1. uds 39

UDS, Release 0.1.1

40 Chapter 7. API Reference

CHAPTER

EIGHT

UDS KNOWLEDGE BASE

If you are not an UDS expert, this part of documentation is created for you. It is meant to provide a technical support
for every user of UDS package so you can better understand the code, but also UDS protocol itself.

8.1 UDS OSI Model

Overview of UDS OSI model.

8.1.1 UDS Standards

UDS is defined by multiple standards which are the main source of information and requirements about this protocol.
Full list of standards is included in the table below:

OSI Layer Common CAN FlexRay Ethernet K-Line LIN
Layer 7 Appli-
cation

ISO 14229-1
ISO 27145-3

ISO 14229-3 ISO
14229-4

ISO
14229-5

ISO
14229-6

ISO
14229-7

Layer 6 Presen-
tation

ISO 27145-2

Layer 5 Session ISO 14229-2
Layer 4 Trans-
port

ISO 27145-4 ISO 15765-2 ISO
10681-2

ISO
13400-2

Not appli-
cable

ISO
17987-2

Layer 3 Net-
work
Layer 2 Data ISO 11898-1 ISO

17458-2
ISO
13400-3

ISO
14230-2

ISO
17987-3

Layer 1 Physi-
cal

ISO 11898-2
ISO 11898-3

ISO
17458-4

ISO
14230-1

ISO
17987-4

Where:

• OSI Layer - OSI Model Layer for which standards are relevant

• Common - standards mentioned in this column are always relevant for UDS communication regardless of
bus used

• CAN - standards which are specific for UDS on CAN implementation

• FlexRay - standards which are specific for UDS on FlexRay implementation

• Ethernet - standards which are specific for UDS on IP implementation

• K-Line - standards which are specific for UDS on K-Line implementation

41

https://github.com/mdabrowski1990/uds
https://en.wikipedia.org/wiki/OSI_model

UDS, Release 0.1.1

• LIN - standards which are specific for UDS on LIN implementation

8.1.2 UDS Functionalities

An overview of features that are required to fully implement UDS protocol is presented in the table below:

OSI Layer Functionalities Implementation
Layer 7 Application

• diagnostic messages support • uds.messages.
uds_message

Layer 6 Presentation
• diagnostic messages data in-

terpretation
• messaging database import

from a file
• messaging database export to

a file

To be provided with Database fea-
ture.

Layer 5 Session
• Client simulation
• Server simulation

To be provided with Client feature.
To be provided with Server feature.

Layer 4 Transport • UDS packet support
• bus specific segmentation
• bus specific packets transmis-

sion

• uds.messages.
uds_packet

To be extended with features:
- Segmentation
- Transport Interface
- support for each bus

Layer 3 Network

Layer 2 Data • frames transmission
• frames receiving

External python packages for bus
handling:

• CAN
More driver packages to be decided.

Layer 1 Physical

Where:

• OSI Layer - considered OSI Model Layer

• Functionalities - functionalities required in the implementation to handle considered UDS OSI layer

• Implementation - UDS package implementation that provides mentioned functionalities

8.1.3 Protocol Data Units

Each layer of OSI Model defines their own Protocol Data Unit (PDU). To make things simpler for the users and our
developers, in the implementation we distinguish following PDUs:

• Application Protocol Data Unit (A_PDU) - called diagnostic message or UDS Message in the implementation
and documentation. More information about A_PDU can be found in:

– knowledge base section - diagnostic message

– implementation - diagnostic message

• Network Protocol Data Unit (N_PDU) - called UDS packet in the implementation and documentation. More
information about N_PDU can be found in:

– knowledge base section - UDS packet

42 Chapter 8. UDS Knowledge Base

https://python-can.readthedocs.io
https://en.wikipedia.org/wiki/Protocol_data_unit

UDS, Release 0.1.1

– implementation section - UDS packet

• Data Protocol Data Unit (D_PDU) - called frame in the implementation and documentation. We do not have any
internal frames documentation. Implementation of frames is usually provided by external packages.

Fig. 1: UDS Protocol Data Units on different layers of OSI Model.

8.2 Diagnostic Message

Messages that are exchanged by clients and servers during UDS communications are usually called diagnostic messages.
In the documentation and the implementation, UDS message name is also in use.

We distinguish two types of diagnostic messages depending on who is a transmitter:

• diagnostic request

• diagnostic response

UDS communication is always initiated by a client who sends a diagnostic request to a network that it has direct
connection with. The client might not be directly connected to a desired recipient(s) of the request, therefore some
servers might be forced to act as gateways and transmit the request to another sub-network(s). Servers’ decision (whether
to redirect a message to another sub-network) depends on a target(s) of the request i.e. server shall transmit the request
to the sub-network if this is a route (not necessarily a direct one) to at least one recipient of the message.

Each server which was the recipient of the request, might decide to send a response back to the nearest client (the one
which previously transmitted the request in this sub-network). Then, the client shall act as a gateway again and redirect
the response back until it reaches the request message originator (Diagnostic Tester).

8.2. Diagnostic Message 43

https://en.wikipedia.org/wiki/Frame_(networking)

UDS, Release 0.1.1

Fig. 2: Diagnostic request routing in example vehicle networks.
In this example all ECUs in the vehicle are the targets of the request - functionally addressed request was sent.

44 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

Fig. 3: Diagnostic responses routing in example vehicle networks.
In this example all ECUs in the vehicle responds to the request.

8.2. Diagnostic Message 45

UDS, Release 0.1.1

8.2.1 Diagnostic Request

Diagnostic request is a diagnostic message that was transmitted by a client and targets a server or group of servers.
Diagnostic request can be identified by its Service Identifier (SID) value.

8.2.2 Diagnostic Response

Diagnostic response is a diagnostic message that was transmitted by a server and targets a client. Diagnostic response
can be identified by its Service Identifier (SID) value.

UDS defines two formats of diagnostic responses:

• positive response message

• negative response message

Positive Response Message

If a server responds with a positive response message, it means that the server received the corresponding request
message and executed actions requested by a client.

Format of positive response messages:

Byte Description Value
1 Response SID SID + 0x40
2 data-parameter#1 XX
.
n data-parameter#n XX

Where:

• SID - Service Identifier value that was received in the request message to which the server responded

• XX - any byte value

Note: When positive diagnostic message is received, this equation is always true:

RSID = SID + 0x40

Negative Response Message

If a server responds with a negative response message, it means that (for some reason) the server could not execute
actions requested by a client.

Format of negative response messages:

Byte Description Value
1 Negative Response SID 0x7F
2 Request SID SID
3 NRC XX

Where:

• SID - Service Identifier value that was received in the request message to which the server responded

• NRC - Negative Response Code value that identified the reason for negative response

46 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

8.2.3 Service Identifier

Service Identifier (SID) is data parameter that is always located in the first Application Data (A_Data) byte of each
diagnostic message . SID value determines whether the message is diagnostic request or diagnostic response. General
purpose (application) and format of diagnostic message is also by determined by SID value.

List of all Service Identifier (SID) values and their application:

• 0x00 - not applicable, reserved by ISO 14229-1

• 0x01-0x0F - ISO 15031-5/SAE J1979 specific services

• 0x10 - DiagnosticSessionControl service request

• 0x11 - ECUReset service request

• 0x12-0x13 - reserved by ISO 14229-1

• 0x14 - ClearDiagnosticInformation service request

• 0x15-0x18 - reserved by ISO 14229-1

• 0x19 - ReadDTCInformation service request

• 0x1A-0x21 - reserved by ISO 14229-1

• 0x22 - ReadDataByIdentifier service request

• 0x23 - ReadMemoryByAddress service request

• 0x24 - ReadScalingDataByIdentifier service request

• 0x25-0x26 - reserved by ISO 14229-1

• 0x27 - SecurityAccess service request

• 0x28 - CommunicationControl service request

• 0x29 - Authentication service request

• 0x2A - ReadDataByPeriodicIdentifier service request

• 0x2B - reserved by ISO 14229-1

• 0x2C - DynamicallyDefineDataIdentifier service request

• 0x2D - reserved by ISO 14229-1

• 0x2E - WriteDataByIdentifier service request

• 0x2F - InputOutputControlByIdentifier service request

• 0x30 - reserved by ISO 14229-1

• 0x31 - RoutineControl service request

• 0x32-0x33 - reserved by ISO 14229-1

• 0x34 - RequestDownload service request

• 0x35 - RequestUpload service request

• 0x36 - TransferData service request

• 0x37 - RequestTransferExit service request

• 0x38 - RequestFileTransfer service request

• 0x39-0x3C - reserved by ISO 14229-1

8.2. Diagnostic Message 47

UDS, Release 0.1.1

• 0x3D - WriteMemoryByAddress service request

• 0x3E - TesterPresent service request

• 0x3F - not applicable, reserved by ISO 14229-1

• 0x40 - not applicable, reserved by ISO 14229-1

• 0x41-0x4F - ISO 15031-5/SAE J1979 specific services

• 0x50 - positive response to DiagnosticSessionControl service

• 0x51 - positive response to ECUReset service

• 0x52-0x53 - reserved by ISO 14229-1

• 0x54 - positive response to ClearDiagnosticInformation service

• 0x55-0x58 - reserved by ISO 14229-1

• 0x59 - positive response to ReadDTCInformation service

• 0x5A-0x61 - reserved by ISO 14229-1

• 0x62 - positive response to ReadDataByIdentifier service

• 0x63 - positive response to ReadMemoryByAddress service

• 0x64 - positive response to ReadScalingDataByIdentifier service

• 0x65-0x66 - reserved by ISO 14229-1

• 0x67 - positive response to SecurityAccess service

• 0x68 - positive response to CommunicationControl service

• 0x69 - positive response to Authentication service

• 0x6A - positive response to ReadDataByPeriodicIdentifier service

• 0x6B - reserved by ISO 14229-1

• 0x6C - positive response to DynamicallyDefineDataIdentifier service

• 0x6D - reserved by ISO 14229-1

• 0x6E - positive response to WriteDataByIdentifier service

• 0x6F - positive response to InputOutputControlByIdentifier service

• 0x70 - reserved by ISO 14229-1

• 0x71 - positive response to RoutineControl service

• 0x72-0x73 - reserved by ISO 14229-1

• 0x74 - positive response to RequestDownload service

• 0x75 - positive response to RequestUpload service

• 0x76 - positive response to TransferData service

• 0x77 - positive response to RequestTransferExit service

• 0x78 - positive response to RequestFileTransfer service

• 0x79-0x7C - reserved by ISO 14229-1

• 0x7D - positive response to WriteMemoryByAddress service

• 0x7E - positive response to TesterPresent service

48 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

• 0x7F - negative response service identifier

• 0x80-0x82 - not applicable, reserved by ISO 14229-1

• 0x83 - reserved by ISO 14229-1

• 0x84 - SecuredDataTransmission service request

• 0x85 - ControlDTCSetting service request

• 0x86 - ResponseOnEvent service request

• 0x87 - LinkControl service request

• 0x88 - reserved by ISO 14229-1

• 0x89-0xB9 - not applicable, reserved by ISO 14229-1

• 0xBA-0xBE - system supplier specific service requests

• 0xBF-0xC2 - not applicable, reserved by ISO 14229-1

• 0xC3 - reserved by ISO 14229-1

• 0xC4 - positive response to SecuredDataTransmission service

• 0xC5 - positive response to ControlDTCSetting service

• 0xC6 - positive response to ResponseOnEvent service

• 0xC7 - positive response to LinkControl service

• 0xC8 - reserved by ISO 14229-1

• 0xC9-0xF9 - not applicable, reserved by ISO 14229-1

• 0xFA-0xFE - positive responses to system supplier specific requests

• 0xFF - not applicable, reserved by ISO 14229-1

DiagnosticSessionControl

DiagnosticSessionControl service is used to change diagnostic sessions in the server(s). In each diagnostic session a
different set of diagnostic services (and/or functionalities) is enabled in the server. Server shall always be in exactly
one diagnostic session.

ECUReset

ECUReset service is used by the client to request a server reset.

ClearDiagnosticInformation

ClearDiagnosticInformation service is used by the client to clear all diagnostic information (DTC and related data) in
one or multiple servers’ memory.

8.2. Diagnostic Message 49

UDS, Release 0.1.1

ReadDTCInformation

ReadDTCInformation service allows the client to read from any server or group of servers within a vehicle, current
information about all Diagnostic Trouble Codes. This could be a status of reported Diagnostic Trouble Code (DTC),
number of currently active DTCs or any other information returned by supported ReadDTCInformation SubFunctions.

ReadDataByIdentifier

ReadDataByIdentifier service allows the client to request data record values from the server identifier by one or more
DataIdentifiers (DIDs).

ReadMemoryByAddress

ReadMemoryByAddress service allows the client to request server’s memory data stored under provided memory ad-
dress.

ReadScalingDataByIdentifier

ReadScalingDataByIdentifier service allows the client to request from the server a scaling data record identified by a
DataIdentifier (DID). The scaling data contains information such as data record type (e.g. ASCII, signed float), formula
and its coefficients used for value calculation, units, etc.

SecurityAccess

SecurityAccess service allows the client to unlock functions/services with restricted access.

CommunicationControl

CommunicationControl service allows the client to switch on/off the transmission and/or the reception of certain mes-
sages on a server(s).

Authentication

Authentication service provides a means for the client to prove its identity, allowing it to access data and/or diagnostic
services, which have restricted access for, for example security, emissions, or safety reasons.

ReadDataByPeriodicIdentifier

ReadDataByPeriodicIdentifier service allows the client to request the periodic transmission of data record values from
the server identified by one or more periodicDataIdentifiers.

50 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

DynamicallyDefineDataIdentifier

DynamicallyDefineDataIdentifier service allows the client to dynamically define in a server a DataIdentifier (DID) that
can be read via the ReadDataByIdentifier service at a later time.

WriteDataByIdentifier

WriteDataByIdentifier service allows the client to write information into the server at an internal location specified by
the provided DataIdentifier (DID).

InputOutputControlByIdentifier

InputOutputControlByIdentifier service allows the client to substitute a value for an input signal, internal server function
and/or force control to a value for an output (actuator) of an electronic system.

RoutineControl

RoutineControl service allows the client to execute a defined sequence of steps to obtain any relevant result. There is
a lot of flexibility with this service, but typical usage may include functionality such as erasing memory, resetting or
learning adaptive data, running a self-test, overriding the normal server control strategy.

RequestDownload

RequestDownload service allows the client to initiate a data transfer from the client to the server (download).

RequestUpload

RequestUpload service allows the client to initiate a data transfer from the server to the client (upload).

TransferData

TransferData service is used by the client to transfer data either from the client to the server (download) or from the
server to the client (upload).

RequestTransferExit

RequestTransferExit service is used by the client to terminate a data transfer between the client and server.

RequestFileTransfer

RequestFileTransfer service allows the client to initiate a file data transfer either from the server to the client (upload)
or from the server to the client (upload).

8.2. Diagnostic Message 51

UDS, Release 0.1.1

WriteMemoryByAddress

WriteMemoryByAddress service allows the client to write information into server’s memory data under provided mem-
ory address.

TesterPresent

TesterPresent service is used by the client to indicate to a server(s) that the client is still connected to a vehicle and
certain diagnostic services and/or communication that have been previously activated are to remain active.

SecuredDataTransmission

SecuredDataTransmission service is applicable if a client intends to use diagnostic services defined in this document
in a secured mode. It may also be used to transmit external data, which conform to some other application protocol,
in a secured mode between a client and a server. A secured mode in this context means that the data transmitted is
protected by cryptographic methods.

ControlDTCSetting

ControlDTCSetting service allows the client to stop or resume the updating of DTC status bits in the server(s) memory.

ResponseOnEvent

ResponseOnEvent service allows the client to request from the server to start ot stop transmission of responses on a
specified event.

LinkControl

LinkControl service allows the client to control the communication between the client and the server(s) in order to gain
bus bandwidth for diagnostic purposes (e.g. programming).

8.2.4 Negative Response Code

Negative Response Code (NRC) is one byte value which contains information why a server is not sending a positive
response message.

List of NRC values:

• 0x00 - positiveResponse - This NRC shall not be used in a negative response message. This positiveRe-
sponse parameter value is reserved for server internal implementation.

• 0x00-0x0F - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

• 0x10 - generalReject - This NRC indicates that the requested action has been rejected by the server.

• 0x11 - serviceNotSupported - This NRC indicates that the requested action will not be taken because the
server does not support the requested service.

• 0x12 - SubFunctionNotSupported - This NRC indicates that the requested action will not be taken because
the server does not support the service specific parameters of the request message.

52 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

• 0x13 - incorrectMessageLengthOrInvalidFormat - This NRC indicates that the requested action will not
be taken because the length of the received request message does not match the prescribed length for the
specified service or the format of the parameters do not match the prescribed format for the specified service.

• 0x14 - responseTooLong - This NRC shall be reported by the server if the response to be generated exceeds
the maximum number of bytes available by the underlying network layer. This could occur if the response
message exceeds the maximum size allowed by the underlying transport protocol or if the response message
exceeds the server buffer size allocated for that purpose.

• 0x15-0x20 - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

• 0x21 - busyRepeatRequest - This NRC indicates that the server is temporarily too busy to perform the
requested operation. In this circumstance the client shall perform repetition of the “identical request mes-
sage” or “another request message”. The repetition of the request shall be delayed by a time specified in
the respective implementation documents.

• 0x22 - conditionsNotCorrect - This NRC indicates that the requested action will not be taken because the
server prerequisite conditions are not met.

• 0x23 - ISO Reserved - This value is reserved for future definition by ISO 14229 Standard.

• 0x24 - requestSequenceError - This NRC indicates that the requested action will not be taken because the
server expects a different sequence of request messages or message as sent by the client. This may occur
when sequence sensitive requests are issued in the wrong order.

• 0x25 - noResponseFromSubnetComponent - This NRC indicates that the server has received the request
but the requested action could not be performed by the server as a subnet component which is necessary to
supply the requested information did not respond within the specified time.

• 0x26 - FailurePreventsExecutionOfRequestedAction - This NRC indicates that the requested action will not
be taken because a failure condition, identified by a DTC (with at least one DTC status bit for TestFailed,
Pending, Confirmed or TestFailedSinceLastClear set to 1), has occurred and that this failure condition
prevents the server from performing the requested action.

• 0x27-0x30 - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

• 0x31 - requestOutOfRange - This NRC indicates that the requested action will not be taken because the
server has detected that the request message contains a parameter which attempts to substitute a value
beyond its range of authority (e.g. attempting to substitute a data byte of 111 when the data is only defined
to 100), or which attempts to access a DataIdentifier/RoutineIdentifer that is not supported or not supported
in active session.

• 0x32 - ISO Reserved - This value is reserved for future definition by ISO 14229 Standard.

• 0x33 - securityAccessDenied - This NRC indicates that the requested action will not be taken because the
server’s security strategy has not been satisfied by the client.

• 0x34 - authenticationRequired - This NRC indicates that the requested service will not be taken because
the client has insufficient rights based on its Authentication state.

• 0x35 - invalidKey - This NRC indicates that the server has not given security access because the key sent
by the client did not match with the key in the server’s memory. This counts as an attempt to gain security.

• 0x36 - exceedNumberOfAttempts - This NRC indicates that the requested action will not be taken because
the client has unsuccessfully attempted to gain security access more times than the server’s security strategy
will allow.

• 0x37 - requiredTimeDelayNotExpired - This NRC indicates that the requested action will not be taken
because the client’s latest attempt to gain security access was initiated before the server’s required timeout
period had elapsed.

8.2. Diagnostic Message 53

UDS, Release 0.1.1

• 0x38 - secureDataTransmissionRequired - This NRC indicates that the requested service will not be taken
because the requested action is required to be sent using a secured communication channel.

• 0x39 - secureDataTransmissionNotAllowed - This NRC indicates that this message was received using the
SecuredDataTransmission (SID 0x84) service. However, the requested action is not allowed to be sent
using the SecuredDataTransmission (0x84) service.

• 0x3A - secureDataVerificationFailed - This NRC indicates that the message failed in the security sub-layer.

• 0x3B-0x4F - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

• 0x50 - Certificate verification failed, Invalid Time Period - Date and time of the server does not match the
validity period of the Certificate.

• 0x51 - Certificate verification failed, Invalid Signature - Signature of the Certificate could not be verified.

• 0x52 - Certificate verification failed, Invalid Chain of Trust - Certificate could not be verified against stored
information about the issuing authority.

• 0x53 - Certificate verification failed, Invalid Type - Certificate does not match the current requested use
case.

• 0x54 - Certificate verification failed, Invalid Format - Certificate could not be evaluated because the format
requirement has not been met.

• 0x55 - Certificate verification failed, Invalid Content - Certificate could not be verified because the content
does not match.

• 0x56 - Certificate verification failed, Invalid Scope - The scope of the Certificate does not match the contents
of the server.

• 0x57 - Certificate verification failed, Invalid Certificate (revoked) - Certificate received from client is in-
valid, because the server has revoked access for some reason.

• 0x58 - Ownership verification failed - Delivered Ownership does not match the provided challenge or could
not verified with the own private key.

• 0x59 - Challenge calculation failed - The challenge could not be calculated on the server side.

• 0x5A - Setting Access Rights failed - The server could not set the access rights.

• 0x5B - Session key creation/derivation failed - The server could not create or derive a session key.

• 0x5C - Configuration data usage failed - The server could not work with the provided configuration data.

• 0x5D - DeAuthentication failed - DeAuthentication was not successful, server could still be unprotected.

• 0x5E-0x6F - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

• 0x70 - uploadDownloadNotAccepted - This NRC indicates that an attempt to upload/download to a server’s
memory cannot be accomplished due to some fault conditions.

• 0x71 - transferDataSuspended - This NRC indicates that a data transfer operation was halted due to some
fault. The active transferData sequence shall be aborted.

• 0x72 - generalProgrammingFailure - This NRC indicates that the server detected an error when erasing or
programming a memory location in the permanent memory device (e.g. Flash Memory).

• 0x73 - wrongBlockSequenceCounter - This NRC indicates that the server detected an error in the sequence
of blockSequenceCounter values. Note that the repetition of a TransferData request message with a block-
SequenceCounter equal to the one included in the previous TransferData request message shall be accepted
by the server.

• 0x74-0x77 - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

54 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

• 0x78 - requestCorrectlyReceived-ResponsePending - This NRC indicates that the request message was
received correctly, and that all parameters in the request message were valid (these checks can be delayed
until after sending this NRC if executing the boot software), but the action to be performed is not yet
completed and the server is not yet ready to receive another request. As soon as the requested service has
been completed, the server shall send a positive response message or negative response message with a
response code different from this.

• 0x79-0x7D - ISO Reserved - This range of values is reserved for future definition by ISO 14229 Standard.

• 0x7E - SubFunctionNotSupportedInActiveSession - This NRC indicates that the requested action will not
be taken because the server does not support the requested SubFunction in the session currently active.
This NRC shall only be used when the requested SubFunction is known to be supported in another session,
otherwise response code SubFunctionNotSupported shall be used.

• 0x7F - serviceNotSupportedInActiveSession - This NRC indicates that the requested action will not be taken
because the server does not support the requested service in the session currently active. This NRC shall
only be used when the requested service is known to be supported in another session, otherwise response
code serviceNotSupported shall be used.

• 0x80 - ISO Reserved - This value is reserved for future definition by ISO 14229 Standard.

• 0x81 - rpmTooHigh - This NRC indicates that the requested action will not be taken because the server
prerequisite condition for RPM is not met (current RPM is above a preprogrammed maximum threshold).

• 0x82 - rpmTooLow - This NRC indicates that the requested action will not be taken because the server
prerequisite condition for RPM is not met (current RPM is below a preprogrammed minimum threshold).

• 0x83 - engineIsRunning - This NRC is required for those actuator tests which cannot be actuated while the
Engine is running. This is different from RPM too high negative response, and shall be allowed.

• 0x84 - engineIsNotRunning - This NRC is required for those actuator tests which cannot be actuated unless
the Engine is running. This is different from RPM too low negative response, and shall be allowed.

• 0x85 - engineRunTimeTooLow - This NRC indicates that the requested action will not be taken because
the server prerequisite condition for engine run time is not met (current engine run time is below a prepro-
grammed limit).

• 0x86 - temperatureTooHigh - This NRC indicates that the requested action will not be taken because the
server prerequisite condition for temperature is not met (current temperature is above a preprogrammed
maximum threshold).

• 0x87 - temperatureTooLow - This NRC indicates that the requested action will not be taken because the
server prerequisite condition for temperature is not met (current temperature is below a preprogrammed
minimum threshold).

• 0x88 - vehicleSpeedTooHigh - This NRC indicates that the requested action will not be taken because the
server prerequisite condition for vehicle speed is not met (current VS is above a preprogrammed maximum
threshold).

• 0x89 - vehicleSpeedTooLow - This NRC indicates that the requested action will not be taken because the
server prerequisite condition for vehicle speed is not met (current VS is below a preprogrammed minimum
threshold).

• 0x8A - throttle/PedalTooHigh - This NRC indicates that the requested action will not be taken because the
server prerequisite condition for throttle/pedal position is not met (current throttle/pedal position is above
a preprogrammed maximum threshold).

• 0x8B - throttle/PedalTooLow - This NRC indicates that the requested action will not be taken because the
server prerequisite condition for throttle/pedal position is not met (current throttle/pedal position is below
a preprogrammed minimum threshold).

8.2. Diagnostic Message 55

UDS, Release 0.1.1

• 0x8C - transmissionRangeNotInNeutral - This NRC indicates that the requested action will not be taken
because the server prerequisite condition for being in neutral is not met (current transmission range is not
in neutral).

• 0x8D - transmissionRangeNotInGear - This NRC indicates that the requested action will not be taken be-
cause the server prerequisite condition for being in gear is not met (current transmission range is not in
gear).

• 0x8E - ISO Reserved - This value is reserved for future definition by ISO 14229 Standard.

• 0x8F - brakeSwitch(es)NotClosed (Brake Pedal not pressed or not applied) - This NRC indicates that for
safety reasons, this is required for certain tests before it begins, and shall be maintained for the entire
duration of the test.

• 0x90 - shifterLeverNotInPark - This NRC indicates that for safety reasons, this is required for certain tests
before it begins, and shall be maintained for the entire duration of the test.

• 0x91 - torqueConverterClutchLocked - This NRC indicates that the requested action will not be taken
because the server prerequisite condition for torque converter clutch is not met (current torque converter
clutch status above a preprogrammed limit or locked).

• 0x92 - voltageTooHigh - This NRC indicates that the requested action will not be taken because the server
prerequisite condition for voltage at the primary pin of the server (ECU) is not met (current voltage is above
a preprogrammed maximum threshold).

• 0x93 - voltageTooLow - This NRC indicates that the requested action will not be taken because the server
prerequisite condition for voltage at the primary pin of the server (ECU) is not met (current voltage is below
a preprogrammed minimum threshold).

• 0x94 - ResourceTemporarilyNotAvailable - This NRC indicates that the server has received the request but
the requested action could not be performed by the server because an application which is necessary to
supply the requested information is temporality not available. This NRC is in general supported by each
diagnostic service, as not otherwise stated in the data link specific implementation document, therefore it
is not listed in the list of applicable response codes of the diagnostic services.

• 0x95-0xEF - reservedForSpecificConditionsNotCorrect - This range of values is reserved for future defini-
tion condition not correct scenarios by ISO 14229 Standard.

• 0xF0-0xFE - vehicleManufacturerSpecificConditionsNotCorrect - This range of values is reserved for ve-
hicle manufacturer specific condition not correct scenarios.

• 0xFF - ISO Reserved - This value is reserved for future definition by ISO 14229 Standard.

8.2.5 Addressing

Addressing determines model of UDS communication.

We distinguish following addressing types:

• Physical

• Functional

56 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

Physical

Physical addressing is used to send a dedicated message to a certain server (ECU). When physically addressed messages
are sent, the direct (point-to-point) communication between the client and the server takes place. The server shall
respond to a physically addressed request unless the request contains an information that a response is not required
(further explained in response behaviour to physically addressed request chapter).

NOTE: You do not need a direct physical connection between a client and a server to have physically addressed com-
munication as all messages shall be routed to a target of each message.

Response behaviour to physically addressed request

Expected server behaviour in case of receiving physically addressed request message with SubFunction parameter:

Client
request

Server capability Server response Comment

Ad-
dress-
ing

SPRMIBSID
sup-
ported

SF
sup-
ported

Data-
Param
sup-
ported

Mes-
sage

NRC

phys-
ical

False
(bit =
0)

YES YES At least 1 Pos-
itive
Re-
sponse

— Server supports the requests and sends pos-
itive response.

At least 1 Neg-
ative
Re-
sponse

NRC =
XX

Server sends negative response because an
error occurred processing the data parame-
ters of request message.

None NRC =
ROOR

Servers sends negative response with NRC
0x31.

NO — — NRC =
SNS or
SNSIAS

Servers sends negative response with NRC
0x11 or 0x7F.

YES NO — NRC =
SFNS or
SFNSIAS

Servers sends negative response with NRC
0x12 or 0x7E.

True
(bit =
1)

YES YES At least 1 No Re-
sponse

— Server does not send a response.

At least 1 Neg-
ative
Re-
sponse

NRC =
XX

Server sends negative response because an
error occurred processing the data parame-
ters of request message.

None NRC =
ROOR

Servers sends negative response with NRC
0x31.

NO — — NRC =
SNS or
SNSIAS

Servers sends negative response with NRC
0x11 or 0x7F.

YES NO — NRC =
SFNS or
SFNSIAS

Servers sends negative response with NRC
0x12 or 0x7E.

Expected server behaviour in case of receiving physically addressed request message without SubFunction parameter:

8.2. Diagnostic Message 57

UDS, Release 0.1.1

Client
re-
quest

Server capability Server response Comment

Ad-
dress-
ing

SID
sup-
ported

Data-
Param
supported

Message NRC

physi-
cal

YES All Positive
Re-
sponse

— Server supports the requests and sends positive re-
sponse.

At least 1 — Server supports the requests and sends positive re-
sponse.

At least 1 Negative
Re-
sponse

NRC = XX Server sends negative response because an error oc-
curred processing the data parameters of request
message.

None NRC =
ROOR

Servers sends negative response with NRC 0x31.

NO — NRC =
SNS or
SNSIAS

Servers sends negative response with NRC 0x11 or
0x7F

Where:

• SPRMIB - flag informing whether Suppress Positive Response Message Indication Bit is set in the received
request message

• SID supported - flag informing whether Service Identifier in the received request message is supported by
the server

• SF supported - flag informing whether SubFunction in the received request message is supported by the
server

• DataParam supported - information whether values of data parameters (e.g. DIDs, RIDs, DTCStatusMask)
in the received request message are supported by the server

• NRC - Negative Response Code

• ROOR - NRC 0x31 (requestOutOfRange)

• SNS - NRC 0x11 (serviceNotSupported)

• SNSIAS - NRC 0x7F (serviceNotSupportedInActiveSession)

• SFNS - NRC 0x12 (SubFunctionNotSupported)

• SFNSIAS - NRC 0x7E (SubFunctionNotSupportedInActiveSession)

• XX - NRC code that is supported by the server and suitable to the current situation (e.g. NRC 0x21 busyRe-
peatRequest if server is currently overloaded and cannot process next request message)

Functional

Functional addressing is used to send messages to multiple servers (ECUs) in the network. When functionally addressed
messages are sent, a one to many communication between a client and servers (ECUs) takes place. A server shall only
respond to certain functionally addressed requests (further explained in response behaviour to functionally addressed
request chapter.

NOTE: Some types of buses (e.g. LIN) might also support broadcast communication which slightly change expected
server behaviour. When broadcast communication is used, then a server response is never expected by a client.

58 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

Response behaviour to functionally addressed request

Expected server behaviour in case of receiving functionally addressed request message with SubFunction parameter:

Client re-
quest

Server capability Server re-
sponse

Comment

Ad-
dress-
ing

SPRMIBSID
sup-
ported

SF
sup-
ported

Data-
Param
sup-
ported

Mes-
sage

NRC

func-
tional

False
(bit =
0)

YES YES At least 1 Positive
Re-
sponse

— Server supports the requests and sends positive
response.

At least 1 Neg-
ative
Re-
sponse

NRC
=
XX

Server sends negative response because an er-
ror occurred processing the data parameters of
request message.

None No Re-
sponse

— Server does not send a response.
NO — — — Server does not send a response.
YES NO — — Server does not send a response.

True
(bit =
1)

YES YES At least 1 No Re-
sponse

— Server does not send a response.

At least 1 Neg-
ative
Re-
sponse

NRC
=
XX

Server sends negative response because an er-
ror occurred processing the data parameters of
request message.

None No Re-
sponse

— Server does not send a response.
NO — — — Server does not send a response.
YES NO — — Server does not send a response.

Expected server behaviour in case of receiving functionally addressed request message without SubFunction parameter:

Client
re-
quest

Server capability Server response Comment

Ad-
dress-
ing

SID
sup-
ported

Data-
Param
supported

Message NRC

func-
tional

YES All Positive
Response

— Server supports the requests and sends positive response.
At least 1 — Server supports the requests and sends positive response.
At least 1 Negative

Response
NRC
= XX

Server sends negative response because an error oc-
curred processing the data parameters of request mes-
sage.

None No
Response

— Server does not send a response.
NO — — Server does not send a response.

Where:

• SPRMIB - flag informing whether Suppress Positive Response Message Indication Bit is set in the received
request message

• SID supported - flag informing whether Service Identifier in the received request message is supported by
the server

8.2. Diagnostic Message 59

UDS, Release 0.1.1

• SF supported - flag informing whether SubFunction in the received request message is supported by the
server

• DataParam supported - information whether values of data parameters (e.g. DIDs, RIDs, DTCStatusMask)
in the received request message are supported by the server

• NRC - Negative Response Code

• XX - NRC code that is supported by the server and suitable to the current situation (e.g. NRC 0x21 busyRe-
peatRequest if server is currently overloaded and cannot process next request message)

8.3 UDS Packet

UDS packet might also be called Network Protocol Data Unit (N_PDU). The packets are created during segmentation
of a diagnostic message. Each diagnostic message consists of at least one UDS Packet (N_PDU). There are some
packets which does not carry any diagnostic message data as they are used to manage the flow of other packets.

UDS packet consists of following fields:

• Network Address Information (N_AI) - packet addressing

• Network Protocol Control Information (N_PCI) - packet type

• Network Data Field (N_Data) - packet date

8.3.1 Network Address Information

Network Address Information (N_AI) contains address information which identifies the recipient(s) and the sender
between whom data exchange takes place. It also describes communication model (e.g. whether response is required)
for the message.

8.3.2 Network Protocol Control Information

Network Protocol Control Information (N_PCI) identifies the type of UDS packet (Network Protocol Data Unit). N_PCI
values and their interpretation are bus specific.

8.3.3 Network Data Field

Network Data Field (N_Data) carries diagnostic message data. It might be an entire diagnostic message data (if a
diagnostic message fits into one packet) or just a part of it (if segmentation had to be used to divide a diagnostic
message into smaller parts).

8.4 Segmentation

8.4.1 Message Segmentation

If diagnostic message data to be transmitted does not fit into a single frame, then segmentation process is required to
divide diagnostic message into smaller pieces called UDS packets.

60 Chapter 8. UDS Knowledge Base

UDS, Release 0.1.1

8.4.2 Packets Desegmentation

Desegmentation is a reverse process to a message segmentation. It transforms one or more UDS packets into a diag-
nostic message.

8.4. Segmentation 61

UDS, Release 0.1.1

62 Chapter 8. UDS Knowledge Base

CHAPTER

NINE

CONTRIBUTION

9.1 How to contribute?

If you want to become a contributor, please visit UDS project page and read CONTRIBUTING.md file.

Contact us to find out what we have got to offer and to get more information.

9.2 Sponsoring

If you consider sponsoring our development team, please visit our wiki page with detailed information for sponsors.
With a little help from you, we would be able to improve the quality of our code, speed up the development and provide
more features. We also offer special treatment for all our sponsors. Please contact us for more details.

9.3 Reporting issues

To report issues, please use our issues tracking system.

9.4 Our Sponsors

Full list of our sponsors:

• Merit Automotive - sponsoring since September 2021

63

https://github.com/mdabrowski1990/uds
https://github.com/mdabrowski1990/uds/blob/main/CONTRIBUTING.md
https://uds.readthedocs.io/en/latest/index.html#contact
https://github.com/mdabrowski1990/uds/wiki/Sponsoring
https://uds.readthedocs.io/en/latest/index.html#contact
https://github.com/mdabrowski1990/uds/issues
https://merit-automotive.com/

UDS, Release 0.1.1

64 Chapter 9. Contribution

CHAPTER

TEN

OVERVIEW

The purpose of this project is to provide python tools for simulation (on both sides - client and server) and monitoring
of diagnostic communication defined by ISO-14229. It can be used with any bus type (e.g. CAN, Ethernet, LIN).

The most likely use cases of this package are:

• communication with your vehicle (e.g. reading Diagnostic Trouble Codes)

• monitoring and decoding ongoing UDS communication

• performing tests against on-board ECU (server)

• performing tests against OBD Tester (client)

65

UDS, Release 0.1.1

66 Chapter 10. Overview

CHAPTER

ELEVEN

IMPLEMENTATION STATUS

The package is currently in the early development phase, therefore only a few features are currently available. If you
want to speed up the development, please visit contribution section to find out what are your options.

11.1 Features

Current implementation status of package features:

Feature Implementation Status
UDS Messages and Packets Implemented in version 0.0.2
UDS Packets Reception Ongoing
UDS Packets Transmission Planned
Segmentation Ongoing
Support for Services with multiple responses Planned
Client Simulation Ongoing
Server Simulation Planned
Support for Messages Databases Planned

11.2 Buses supported

Current implementation status of support for communication buses:

Bus Implementation Status
CAN Ongoing
FlexRay Planned
Ethernet Planned
K-Line Planned
LIN Planned

67

UDS, Release 0.1.1

68 Chapter 11. Implementation Status

CHAPTER

TWELVE

LICENSE

The project is licensed under the MIT license - https://github.com/mdabrowski1990/uds/blob/main/LICENSE

69

https://github.com/mdabrowski1990/uds/blob/main/LICENSE

UDS, Release 0.1.1

70 Chapter 12. License

CHAPTER

THIRTEEN

CONTACT

• e-mail: uds-package-development@googlegroups.com

• group: UDS package development

• discord: https://discord.gg/y3waVmR5PZ

Documentation generated

Oct 02, 2021

71

mailto:uds-package-development@googlegroups.com
https://groups.google.com/g/uds-package-development/about
https://discord.gg/y3waVmR5PZ

UDS, Release 0.1.1

72 Chapter 13. Contact

PYTHON MODULE INDEX

u
uds, 17
uds.messages, 17
uds.messages.nrc, 18
uds.messages.service_identifiers, 23
uds.messages.transmission_attributes, 26
uds.messages.uds_message, 27
uds.messages.uds_packet, 29
uds.segmentation, 32
uds.segmentation.abstract_segmenter, 32
uds.transport_interface, 35
uds.transport_interface.packet_queue, 35
uds.utilities, 36
uds.utilities.common_types, 36
uds.utilities.custom_exceptions, 37
uds.utilities.enums, 38

73

UDS, Release 0.1.1

74 Python Module Index

INDEX

Symbols
__del__() (uds.transport_interface.packet_queue.ReceivedPacketsQueue

method), 35
__len__() (uds.transport_interface.packet_queue.ReceivedPacketsQueue

method), 35
__validate_frame() (uds.messages.uds_packet.AbstractUdsPacketRecord

method), 31
__validate_packets_records()

(uds.messages.uds_message.UdsMessageRecord
static method), 28

A
AbstractSegmenter (class in

uds.segmentation.abstract_segmenter), 33
AbstractUdsPacket (class in

uds.messages.uds_packet), 30
AbstractUdsPacketRecord (class in

uds.messages.uds_packet), 31
AbstractUdsPacketType (class in

uds.messages.uds_packet), 29
add_member() (uds.utilities.enums.ExtendableEnum

class method), 38
addressing() (uds.messages.uds_message.UdsMessage

property), 28
addressing() (uds.messages.uds_message.UdsMessageRecord

property), 28
addressing() (uds.messages.uds_packet.AbstractUdsPacket

property), 30
addressing() (uds.messages.uds_packet.AbstractUdsPacketRecord

property), 31
AddressingMemberTyping (in module

uds.messages.transmission_attributes), 26
AddressingType (class in

uds.messages.transmission_attributes), 26
Authentication (uds.messages.service_identifiers.RequestSID

attribute), 24
AuthenticationRequired (uds.messages.nrc.NRC at-

tribute), 19

B
BrakeSwitchOrSwitchesNotClosed

(uds.messages.nrc.NRC attribute), 22

BusyRepeatRequest (uds.messages.nrc.NRC attribute),
19

ByteEnum (class in uds.utilities.enums), 39

C
CertificateVerificationFailed_InvalidCertificate

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidChainOfTrust

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidContent

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidFormat

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidScope

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidSignature

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidTimePeriod

(uds.messages.nrc.NRC attribute), 20
CertificateVerificationFailed_InvalidType

(uds.messages.nrc.NRC attribute), 20
ChallengeCalculationFailed

(uds.messages.nrc.NRC attribute), 20
ClearDiagnosticInformation

(uds.messages.service_identifiers.RequestSID
attribute), 25

CommunicationControl
(uds.messages.service_identifiers.RequestSID
attribute), 24

ConditionsNotCorrect (uds.messages.nrc.NRC
attribute), 19

ConfigurationDataUsageFailed
(uds.messages.nrc.NRC attribute), 20

ControlDTCSetting (uds.messages.service_identifiers.RequestSID
attribute), 24

D
DeAuthenticationFailed (uds.messages.nrc.NRC at-

tribute), 21
desegmentation() (uds.segmentation.abstract_segmenter.AbstractSegmenter

method), 34

75

UDS, Release 0.1.1

DiagnosticSessionControl
(uds.messages.service_identifiers.RequestSID
attribute), 24

direction() (uds.messages.uds_message.UdsMessageRecord
property), 28

direction() (uds.messages.uds_packet.AbstractUdsPacketRecord
property), 31

DirectionMemberTyping (in module
uds.messages.transmission_attributes), 27

DynamicallyDefineDataIdentifier
(uds.messages.service_identifiers.RequestSID
attribute), 25

E
ECUReset (uds.messages.service_identifiers.RequestSID

attribute), 24
EngineIsNotRunning (uds.messages.nrc.NRC at-

tribute), 21
EngineIsRunning (uds.messages.nrc.NRC attribute), 21
EngineRunTimeTooLow (uds.messages.nrc.NRC at-

tribute), 22
ExceedNumberOfAttempts (uds.messages.nrc.NRC at-

tribute), 19
ExtendableEnum (class in uds.utilities.enums), 38

F
FailurePreventsExecutionOfRequestedAction

(uds.messages.nrc.NRC attribute), 19
frame() (uds.messages.uds_packet.AbstractUdsPacketRecord

property), 31
FUNCTIONAL (uds.messages.transmission_attributes.AddressingType

attribute), 26

G
GeneralProgrammingFailure (uds.messages.nrc.NRC

attribute), 21
GeneralReject (uds.messages.nrc.NRC attribute), 18
get_consecutive_packets_number()

(uds.segmentation.abstract_segmenter.AbstractSegmenter
method), 34

get_packet() (uds.transport_interface.packet_queue.ReceivedPacketsQueue
method), 35

I
IncorrectMessageLengthOrInvalidFormat

(uds.messages.nrc.NRC attribute), 18
initial_packet_types()

(uds.segmentation.abstract_segmenter.AbstractSegmenter
property), 33

InputOutputControlByIdentifier
(uds.messages.service_identifiers.RequestSID
attribute), 25

InvalidKey (uds.messages.nrc.NRC attribute), 19

is_complete_packets_sequence()
(uds.segmentation.abstract_segmenter.AbstractSegmenter
method), 34

is_empty() (uds.transport_interface.packet_queue.ReceivedPacketsQueue
method), 35

is_following_packets_sequence()
(uds.segmentation.abstract_segmenter.AbstractSegmenter
method), 33

is_initial_packet_type()
(uds.messages.uds_packet.AbstractUdsPacketType
class method), 30

is_member() (uds.utilities.enums.ValidatedEnum class
method), 39

is_request_sid() (uds.messages.service_identifiers.RequestSID
class method), 25

is_response_sid() (uds.messages.service_identifiers.ResponseSID
class method), 25

is_supported_packet()
(uds.segmentation.abstract_segmenter.AbstractSegmenter
method), 33

is_supported_packets_sequence()
(uds.segmentation.abstract_segmenter.AbstractSegmenter
method), 33

L
LinkControl (uds.messages.service_identifiers.RequestSID

attribute), 24

M
module

uds, 17
uds.messages, 17
uds.messages.nrc, 18
uds.messages.service_identifiers, 23
uds.messages.transmission_attributes, 26
uds.messages.uds_message, 27
uds.messages.uds_packet, 29
uds.segmentation, 32
uds.segmentation.abstract_segmenter, 32
uds.transport_interface, 35
uds.transport_interface.packet_queue, 35
uds.utilities, 36
uds.utilities.common_types, 36
uds.utilities.custom_exceptions, 37
uds.utilities.enums, 38

N
NegativeResponse (uds.messages.service_identifiers.ResponseSID

attribute), 25
NibbleEnum (class in uds.utilities.enums), 39
NoResponseFromSubnetComponent

(uds.messages.nrc.NRC attribute), 19
NRC (class in uds.messages.nrc), 18

76 Index

UDS, Release 0.1.1

O
OwnershipVerificationFailed

(uds.messages.nrc.NRC attribute), 20

P
packet_task_done() (uds.transport_interface.packet_queue.ReceivedPacketsQueue

method), 35
packet_type() (uds.messages.uds_packet.AbstractUdsPacket

property), 30
packet_type() (uds.messages.uds_packet.AbstractUdsPacketRecord

property), 31
packets_records() (uds.messages.uds_message.UdsMessageRecord

property), 28
PacketsDefinitionSequence (in module

uds.messages.uds_packet), 32
PacketsDefinitionTuple (in module

uds.messages.uds_packet), 32
PacketsRecordsSequence (in module

uds.messages.uds_packet), 32
PacketsRecordsTuple (in module

uds.messages.uds_packet), 32
PacketsSequence (in module

uds.messages.uds_packet), 32
PacketsTuple (in module uds.messages.uds_packet), 32
PacketTypesTuple (in module

uds.messages.uds_packet), 32
PacketTyping (in module uds.messages.uds_packet), 32
payload() (uds.messages.uds_message.UdsMessage

property), 28
payload() (uds.messages.uds_message.UdsMessageRecord

property), 28
PHYSICAL (uds.messages.transmission_attributes.AddressingType

attribute), 26
POSSIBLE_REQUEST_SIDS (in module

uds.messages.service_identifiers), 23
POSSIBLE_RESPONSE_SIDS (in module

uds.messages.service_identifiers), 23
put_packet() (uds.transport_interface.packet_queue.ReceivedPacketsQueue

method), 36

R
raw_data() (uds.messages.uds_packet.AbstractUdsPacket

property), 30
raw_data() (uds.messages.uds_packet.AbstractUdsPacketRecord

property), 31
RawByte (in module uds.utilities.common_types), 36
RawBytes (in module uds.utilities.common_types), 37
RawBytesSet (in module uds.utilities.common_types), 36
RawBytesTuple (in module uds.utilities.common_types),

36
ReadDataByIdentifier

(uds.messages.service_identifiers.RequestSID
attribute), 24

ReadDataByPeriodicIdentifier
(uds.messages.service_identifiers.RequestSID
attribute), 24

ReadDTCInformation (uds.messages.service_identifiers.RequestSID
attribute), 25

ReadMemoryByAddress
(uds.messages.service_identifiers.RequestSID
attribute), 24

ReadScalingDataByIdentifier
(uds.messages.service_identifiers.RequestSID
attribute), 24

ReassignmentError, 37
RECEIVED (uds.messages.transmission_attributes.TransmissionDirection

attribute), 27
ReceivedPacketsQueue (class in

uds.transport_interface.packet_queue), 35
RequestCorrectlyReceived_ResponsePending

(uds.messages.nrc.NRC attribute), 21
RequestDownload (uds.messages.service_identifiers.RequestSID

attribute), 25
RequestFileTransfer

(uds.messages.service_identifiers.RequestSID
attribute), 25

RequestOutOfRange (uds.messages.nrc.NRC attribute),
19

RequestSequenceError (uds.messages.nrc.NRC
attribute), 19

RequestSID (class in uds.messages.service_identifiers),
24

RequestTransferExit
(uds.messages.service_identifiers.RequestSID
attribute), 25

RequestUpload (uds.messages.service_identifiers.RequestSID
attribute), 25

RequiredTimeDelayNotExpired
(uds.messages.nrc.NRC attribute), 19

ResourceTemporarilyNotAvailable
(uds.messages.nrc.NRC attribute), 23

ResponseOnEvent (uds.messages.service_identifiers.RequestSID
attribute), 24

ResponseSID (class in uds.messages.service_identifiers),
25

ResponseTooLong (uds.messages.nrc.NRC attribute), 18
RoutineControl (uds.messages.service_identifiers.RequestSID

attribute), 25
RpmTooHigh (uds.messages.nrc.NRC attribute), 21
RpmTooLow (uds.messages.nrc.NRC attribute), 21

S
SecureDataTransmissionNotAllowed

(uds.messages.nrc.NRC attribute), 20
SecureDataTransmissionRequired

(uds.messages.nrc.NRC attribute), 20

Index 77

UDS, Release 0.1.1

SecureDataVerificationFailed
(uds.messages.nrc.NRC attribute), 20

SecuredDataTransmission
(uds.messages.service_identifiers.RequestSID
attribute), 25

SecurityAccess (uds.messages.service_identifiers.RequestSID
attribute), 24

SecurityAccessDenied (uds.messages.nrc.NRC
attribute), 19

segmentation() (uds.segmentation.abstract_segmenter.AbstractSegmenter
method), 34

SegmentationError, 32
ServiceNotSupported (uds.messages.nrc.NRC at-

tribute), 18
ServiceNotSupportedInActiveSession

(uds.messages.nrc.NRC attribute), 21
SessionKeyCreationOrDerivationFailed

(uds.messages.nrc.NRC attribute), 20
SettingAccessRightsFailed (uds.messages.nrc.NRC

attribute), 20
ShifterLeverNotInPark (uds.messages.nrc.NRC at-

tribute), 22
SubFunctionNotSupported (uds.messages.nrc.NRC at-

tribute), 18
SubFunctionNotSupportedInActiveSession

(uds.messages.nrc.NRC attribute), 21
supported_packet_classes()

(uds.segmentation.abstract_segmenter.AbstractSegmenter
property), 33

T
TemperatureTooHigh (uds.messages.nrc.NRC at-

tribute), 22
TemperatureTooLow (uds.messages.nrc.NRC attribute),

22
TesterPresent (uds.messages.service_identifiers.RequestSID

attribute), 24
ThrottleOrPedalTooHigh (uds.messages.nrc.NRC at-

tribute), 22
ThrottleOrPedalTooLow (uds.messages.nrc.NRC at-

tribute), 22
TimeMilliseconds (in module

uds.utilities.common_types), 37
TimeStamp (in module uds.utilities.common_types), 37
TorqueConvertClutchLocked (uds.messages.nrc.NRC

attribute), 22
TransferData (uds.messages.service_identifiers.RequestSID

attribute), 25
TransferDataSuspended (uds.messages.nrc.NRC at-

tribute), 21
transmission_end() (uds.messages.uds_message.UdsMessageRecord

property), 29
transmission_start()

(uds.messages.uds_message.UdsMessageRecord

property), 28
transmission_time()

(uds.messages.uds_packet.AbstractUdsPacketRecord
property), 31

TransmissionDirection (class in
uds.messages.transmission_attributes), 27

TransmissionRangeNotInGear
(uds.messages.nrc.NRC attribute), 22

TransmissionRangeNotInNeutral
(uds.messages.nrc.NRC attribute), 22

TRANSMITTED (uds.messages.transmission_attributes.TransmissionDirection
attribute), 27

U
uds

module, 17
uds.messages

module, 17
uds.messages.nrc

module, 18
uds.messages.service_identifiers

module, 23
uds.messages.transmission_attributes

module, 26
uds.messages.uds_message

module, 27
uds.messages.uds_packet

module, 29
uds.segmentation

module, 32
uds.segmentation.abstract_segmenter

module, 32
uds.transport_interface

module, 35
uds.transport_interface.packet_queue

module, 35
uds.utilities

module, 36
uds.utilities.common_types

module, 36
uds.utilities.custom_exceptions

module, 37
uds.utilities.enums

module, 38
UdsMessage (class in uds.messages.uds_message), 27
UdsMessageRecord (class in

uds.messages.uds_message), 28
UnrecognizedSIDWarning, 23
UploadDownloadNotAccepted (uds.messages.nrc.NRC

attribute), 21

V
validate_member() (uds.utilities.enums.ValidatedEnum

class method), 39

78 Index

UDS, Release 0.1.1

validate_raw_bytes() (in module
uds.utilities.common_types), 37

ValidatedEnum (class in uds.utilities.enums), 38
VehicleSpeedTooHigh (uds.messages.nrc.NRC at-

tribute), 22
VehicleSpeedTooLow (uds.messages.nrc.NRC at-

tribute), 22
VoltageTooHigh (uds.messages.nrc.NRC attribute), 22
VoltageTooLow (uds.messages.nrc.NRC attribute), 23

W
WriteDataByIdentifier

(uds.messages.service_identifiers.RequestSID
attribute), 25

WriteMemoryByAddress
(uds.messages.service_identifiers.RequestSID
attribute), 25

WrongBlockSequenceCounter (uds.messages.nrc.NRC
attribute), 21

Index 79

	Installation
	Diagnostic Messages
	UDS Message Implementation
	UDS Message
	UDS Message Record

	UDS Packet Implementation
	UDS Packet Type
	AbstractUdsPacketType

	UDS Packet
	AbstractUdsPacket

	UDS Packet Record
	AbstractUdsPacketRecord

	UDS Messages Data
	Service Identifiers
	POSSIBLE_REQUEST_SIDS
	RequestSID
	POSSIBLE_RESPONSE_SIDS
	ResponseSID

	Negative Response Codes

	Transmission Attributes
	Addressing
	Transmission Direction

	Segmentation
	AbstractSegmenter

	Transport Interfaces
	CAN Transport Interface
	Ethernet Transport Interface
	LIN Transport Interface
	FlexRay Transport Interface
	K-Line Transport Interface
	Custom Transport Interface

	Client Simulation
	Server Simulation
	API Reference
	uds
	Subpackages
	uds.messages
	Submodules
	uds.messages.nrc
	Module Contents
	Classes
	uds.messages.service_identifiers
	Module Contents
	Classes
	Attributes
	uds.messages.transmission_attributes
	Module Contents
	Classes
	Attributes
	uds.messages.uds_message
	Module Contents
	Classes
	uds.messages.uds_packet
	Module Contents
	Classes
	Attributes

	uds.segmentation
	Submodules
	uds.segmentation.abstract_segmenter
	Module Contents
	Classes

	uds.transport_interface
	Submodules
	uds.transport_interface.packet_queue
	Module Contents
	Classes

	uds.utilities
	Submodules
	uds.utilities.common_types
	Module Contents
	Functions
	Attributes
	uds.utilities.custom_exceptions
	Module Contents
	uds.utilities.enums
	Module Contents
	Classes

	UDS Knowledge Base
	UDS OSI Model
	UDS Standards
	UDS Functionalities
	Protocol Data Units

	Diagnostic Message
	Diagnostic Request
	Diagnostic Response
	Positive Response Message
	Negative Response Message

	Service Identifier
	DiagnosticSessionControl
	ECUReset
	ClearDiagnosticInformation
	ReadDTCInformation
	ReadDataByIdentifier
	ReadMemoryByAddress
	ReadScalingDataByIdentifier
	SecurityAccess
	CommunicationControl
	Authentication
	ReadDataByPeriodicIdentifier
	DynamicallyDefineDataIdentifier
	WriteDataByIdentifier
	InputOutputControlByIdentifier
	RoutineControl
	RequestDownload
	RequestUpload
	TransferData
	RequestTransferExit
	RequestFileTransfer
	WriteMemoryByAddress
	TesterPresent
	SecuredDataTransmission
	ControlDTCSetting
	ResponseOnEvent
	LinkControl

	Negative Response Code
	Addressing
	Physical
	Response behaviour to physically addressed request

	Functional
	Response behaviour to functionally addressed request

	UDS Packet
	Network Address Information
	Network Protocol Control Information
	Network Data Field

	Segmentation
	Message Segmentation
	Packets Desegmentation

	Contribution
	How to contribute?
	Sponsoring
	Reporting issues
	Our Sponsors

	Overview
	Implementation Status
	Features
	Buses supported

	License
	Contact
	Python Module Index
	Index

